Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 61(8): 5718-5737, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38225513

RESUMO

Major Depressive Disorder (MDD) is a severe and multifactorial psychiatric condition. Evidence has shown that environmental factors, such as stress, significantly explain MDD pathophysiology. Studies have hypothesized that changes in histone methylation patterns are involved in impaired glutamatergic signaling. Based on this scenario, this study aims to investigate histone 3 involvement in depression susceptibility or resilience in MDD pathophysiology by investigating cellular and molecular parameters related to i) glutamatergic neurotransmission, ii) astrocytic functioning, and iii) neurogenesis. For this, we subjected male Wistar rats to the Chronic Unpredictable Mild Stress (CUMS) model of depression. We propose that by evaluating the sucrose consumption, open field, and object recognition test performance from animals submitted to CUMS, it is possible to predict with high specificity rats with susceptibility to depressive-like phenotype and resilient to the depressive-like phenotype. We also demonstrated, for the first time, that patterns of H3K4me3, H3K9me3, H3K27me3, and H3K36me3 trimethylation are strictly associated with the resilient or susceptible to depressive-like phenotype in a brain-region-specific manner. Additionally, susceptible animals have reduced DCx and GFAP and resilient animals present increase of AQP-4 immunoreactivity. Together, these results provide evidence that H3 trimethylations are related to the development of the resilient or susceptible to depressive-like phenotype, contributing to further advances in the pathophysiology of MDD and the discovery of mechanisms behind resilience.


Assuntos
Transtorno Depressivo Maior , Modelos Animais de Doenças , Proteína Duplacortina , Histonas , Ratos Wistar , Estresse Psicológico , Animais , Masculino , Transtorno Depressivo Maior/metabolismo , Estresse Psicológico/metabolismo , Metilação , Histonas/metabolismo , Suscetibilidade a Doenças , Resiliência Psicológica , Proteína Glial Fibrilar Ácida/metabolismo , Ratos , Astrócitos/metabolismo
2.
Chemosphere ; 244: 125400, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31809933

RESUMO

Methylmercury (MeHg) is an organic bioaccumulated mercury derivative that strongly affects the environment and represents a public health problem primarily to riparian communities in South America. Our objective was to investigate the hepatic and neurological effects of MeHg exposure during the phases foetal and breast-feeding and adult in Wistar rats. Wistar rats (n = 10) were divided into 3 groups. Control group received mineral oil; The simple exposure (SE) group was exposed only in adulthood (0.5 mg/kg/day); and double exposure (DE) was pre-exposed to MeHg 0.5 mg/kg/day during pregnancy and breastfeeding (±40 days) and re-exposed to MeHg for 45 days from day 100. After, we evaluated possible abnormalities. Behavioral and biochemical parameters in liver and occipital cortex (CO), markers of liver injury, redox and AKT/GSK3ß/mTOR signaling pathway. Our results showed that both groups treated with MeHg presented significant alterations, such as decreased locomotion and exploration and impaired visuospatial perception. The rats exposed to MeHg showed severe liver damage and increased hepatic glycogen concentration. The MeHg groups showed significant impairment in redox balance and oxidative damage to liver macromolecules and CO. MeHg upregulated the AKT/GSK3ß/mTOR pathway and the phosphorylated form of the Tau protein. In addition, we found a reduction in NeuN and GFAP immunocontent. These results represent the first approach to the hepatotoxic and neural effects of foetal and adult MeHg exposure.


Assuntos
Poluentes Ambientais/toxicidade , Compostos de Metilmercúrio/toxicidade , Sistema Nervoso/efeitos dos fármacos , Animais , Aleitamento Materno , Feminino , Feto/metabolismo , Humanos , Fígado/metabolismo , Locomoção , Masculino , Compostos de Metilmercúrio/metabolismo , Oxirredução , Gravidez , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , América do Sul
3.
Neurochem Int ; 125: 25-34, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30739037

RESUMO

Vitamin A (retinol) is involved in signaling pathways regulating gene expression and was postulated to be a major antioxidant and anti-inflammatory compound of the diet. Parkinson's disease (PD) is a progressive neurodegenerative disorder, characterized by loss of nigral dopaminergic neurons, involving oxidative stress and pro-inflammatory activation. The aim of the present study was to evaluate the neuroprotective effects of retinol oral supplementation against 6-hydroxydopamine (6-OHDA, 12 µg per rat) nigrostriatal dopaminergic denervation in Wistar rats. Animals supplemented with retinol (retinyl palmitate, 3000 IU/kg/day) during 28 days exhibited increased retinol content in liver, although circulating retinol levels (serum) were unaltered. Retinol supplementation did not protect against the loss of dopaminergic neurons (assessed through tyrosine hydroxylase immunofluorescence and Western blot). Retinol supplementation prevented the effect of 6-OHDA on Iba-1 levels but had no effect on 6-OHDA-induced GFAP increase. Moreover, GFAP levels were increased by retinol supplementation alone. Rats pre-treated with retinol did not present oxidative damage or thiol redox modifications in liver, and the circulating levels of TNF-α, IL-1ß, IL-6 and IL-10 were unaltered by retinol supplementation, demonstrating that the protocol used here did not cause systemic toxicity to animals. Our results indicate that oral retinol supplementation is not able to protect against 6-OHDA-induced dopaminergic denervation, and it may actually stimulate astrocyte reactivity without altering parameters of systemic toxicity.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , Degeneração Neural/tratamento farmacológico , Simpatectomia Química/métodos , Vitamina A/administração & dosagem , Administração Oral , Animais , Neurônios Dopaminérgicos/metabolismo , Masculino , Degeneração Neural/metabolismo , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Resultado do Tratamento
4.
Mol Neurobiol ; 56(5): 3079-3089, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30094805

RESUMO

The receptor for advanced glycation endproducts (RAGE) is a transmembrane, immunoglobulin-like receptor that interacts with a broad repertoire of extracellular ligands. RAGE belongs to a family of cell adhesion molecules and is considered a key receptor in the inflammation axis and a potential contributor to the neurodegeneration. The present study aimed to investigate the content and cell localization of RAGE in the brain of Wistar rats subjected to systemic inflammation induced by a single dose of lipopolysaccharide (LPS, 5 mg/kg, i.p.). Fifteen days after LPS administration, the content of RAGE was analyzed in the prefrontal cortex (PFC), hippocampus (HIPP), cerebellum (CB), and substantia nigra (SN) were investigated. RAGE levels increased in all structures, except HIPP; however, immunohistochemistry analysis demonstrated that the cell site of RAGE expression changed from blood vessel-like structures to neuronal cells in all brain areas. Besides, the highest level of RAGE expression was found in SN. Immunofluorescence analysis in SN confirmed that RAGE expression was mainly co-localized in endothelial cells (RAGE/PECAM-1 co-staining) in untreated animals, while LPS-treated animals had RAGE expression predominantly in dopaminergic neurons (RAGE/TH co-staining). Decreased TH levels, as well as increased pro-inflammatory markers (TNF-α, IL-1ß, Iba-1, GFAP, and phosphorylated ERK1/2) in SN, occurred concomitantly to RAGE stimulation in the same site. These results suggest a role for RAGE in the establishment of a neuroinflammation-neurodegeneration axis that develops as a long-term response to systemic inflammation by LPS.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Células Endoteliais/metabolismo , Inflamação/metabolismo , Neurônios/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Biomarcadores/metabolismo , Neurônios Dopaminérgicos/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Masculino , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos Wistar , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA