RESUMO
Increasing evidence hints that DNA hypermethylation may mediate the pathogenic response to cardiovascular risk factors. Here, we tested a corollary of that hypothesis, that is, that the DNA methyltransferase inhibitor decitabine (Dec) ameliorates the metabolic profile of mice fed a moderately high-animal fat and protein diet (HAFPD), a proxy of cardiovascular risk-associated Western-type diet. HAFPD-fed mice were exposed to Dec or vehicle for eight weeks (8W set, 4-32/group). To assess any memory of past exposure to Dec, we surveyed a second mice set treated as 8W but HAFPD-fed for further eight weeks without any Dec (16W set, 4-20/group). In 8W, Dec markedly reduced HAFPD-induced body weight gain in females, but marginally in males. Characterization of females revealed that Dec augmented skeletal muscle lipid content, while decreasing liver fat content and increasing plasma nonesterified fatty acids, adipose insulin resistance, and-although marginally-whole blood acylcarnitines, compared to HAFPD alone. Skeletal muscle mitochondrial DNA copy number was higher in 8W mice exposed to HAFPD and Dec, or in 16W mice fed HAFPD only, relative to 8W mice fed HAFPD only, but Dec induced a transcriptional profile indicative of ameliorated mitochondrial function. Memory of past Dec exposure was tissue-specific and sensitive to both duration of exposure to HAFPD and age. In conclusion, Dec redirected HAFPD-induced lipid accumulation toward the skeletal muscle, likely due to augmented mitochondrial functionality and increased lipid demand. As caveat, Dec induced adipose insulin resistance. Our findings may help identifying strategies for prevention and treatment of lipid dysmetabolism.
Assuntos
Decitabina , Dieta Hiperlipídica , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Feminino , Decitabina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas Alimentares/farmacologia , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Resistência à InsulinaRESUMO
Arachidonic acid (AA) is involved in inflammation and plays a role in growth and brain development in infants. We previously showed that exposure of mouse sires to AA for three consecutive generations induces a cumulative change in fatty acid (FA) involved in inflammation and an increase in body and liver weight in the offspring. Here, we tested the hypothesis that paternal AA exposure changes the progeny's behavioral response to a proinflammatory insult, and asked whether tissue-specific FA are associated with that response. Male BALB/c mice were supplemented daily with three doses of AA for 10 days and crossed to non-supplemented females (n = 3/dose). Two-month-old unsupplemented male and female offspring (n = 6/paternal AA dose) were exposed to Gram-negative bacteria-derived lipopolysaccharides (LPS) or saline control two hours prior to open field test (OFT) behavioral analysis and subsequent sacrifice. We probed for significant effects of paternal AA exposure on: OFT behaviors; individual FA content of blood, hypothalamus and hypothalamus-free brain; hypothalamic expression profile of genes related to inflammation (Tnfa, Il1b, Cox1, Cox2) and FA synthesis (Scd1, Elovl6). All parameters were affected by paternal AA supplementation in a sex-specific manner. Paternal AA primed the progeny for behavior associated with increased anxiety, with a marked sex dimorphism: high AA doses acted as surrogate of LPS in males, realigning a number of OFT behaviors that in females were differential between saline and LPS groups. Progeny hypothalamic Scd1, a FA metabolism enzyme with documented pro-inflammatory activity, showed a similar pattern of differential expression between saline and LPS groups at high paternal AA dose in females, that was blunted in males. Progeny FA generally were not affected by LPS, but displayed non-linear associations with paternal AA doses. In conclusion, we document that paternal exposure to AA exerts long-term behavioral and biochemical effects in the progeny in a sex-specific manner.