RESUMO
Water contamination with pesticides is one of the major pollution problems in northwestern Mexico, and this is due to the extensive use of pesticides in agriculture. In this research, water samples of ten sampling sites (fishing grounds, beaches, and both) were analyzed in the search for 28 pesticides (organochlorines, organophosphates, pyrethroids, carbamates, among other chemical classes), supplemented with a calculation of the resulting potential environmental risk. Pesticides were separated from the matrix by liquid-liquid extraction and quantified by gas chromatography coupled to electron micro-capture (organohalogenated) and pulsed flame photometric detectors (organophosphates). In addition, the ecotoxicological risk of pesticides in algae, invertebrates, and fish was assessed, based on seawater pesticide concentrations using the Risk Quotient (RQ) and Toxic Units (TU) approach. The results showed 18 pesticides identified in the analyzed samples, where cypermethrin and chlorpyrifos were identified with the maximum concentrations of 1.223 and 0.994 µg L-1, respectively. In addition, these two pesticides have been associated with acute toxic effects on algae, invertebrates, and fish. It is important to pay particular attention to the search for long-term alternatives to the use of chlorpyrifos and cypermethrin due to their high detection rates and the risks associated with their toxic properties. However, the adoption of alternative measures to synthetic pesticide control should be a priority, moving towards sustainable practices such as the use of biopesticides, crop rotation and polycultures.
RESUMO
The denitrification process has been studied for biodegradation of some emerging contaminants (ECs). For this, anaerobic sludges from different Wastewater Treatment Plants (WTP) have been used; however, the biodegradation capacity can differ due to the contact they have had with various pollutants, given their origin. This work aims to evaluate the kinetic and metabolic capacity of two denitrifying sludges from different WTPs to biodegrade CH3COO--C and NO3--N. Denitrifying tests were carried out in batches with CH3COO--C (30 mg L-1) in a CN-1 relationship of 1.8 with sludge from a WTP of an educational center (WTP-A) and CH3COO--C (50 mg L-1) to a CN-1 of 1.4 with another from the WTP of Atotonilco de Tula, Hidalgo, México (WTP-B). The results showed that the biodegradation rate of CH3COO--C and NO3--N with the WTP-B sludge was 35 and 75% greater, respectively, compared to the WTP-A sludge. Therefore, we suggest that the consumption difference of substrate is attributable to the sludges of WTP, which have been exposed to a high concentration of a great variety of pollutants.
Assuntos
Poluentes Ambientais , Esgotos , Águas Residuárias , Poluição Ambiental , México , Desnitrificação , Reatores BiológicosRESUMO
17ß-estradiol (E2) is the natural estrogen with the most significant potential for endocrine disruption in the biota of aquatic ecosystems at trace concentrations. It is, therefore, essential to study treatments for water polluted with E2 that would guarantee its complete elimination and mineralization. Denitrification is a biological process shown to have the capacity to completely biodegrade drugs, such as ampicillin. This work is aimed to evaluate the biotransformation of 17ß-estradiol by employing a denitrifying sludge. The assays performed were: (I) abiotic with 3.5 mg E2-C L-1 and (II) denitrifying with 10 mg CH3COO--C L-1 as the reference, 10 mg E2-C L-1 as the sole electron donor, and a mixture of (mg L-1) 10 E2-C with 10 CH3COO--C at C N-1 of 1.1. The E2-C and NO3--N consumption efficiencies were greater than 99%, and HCO3--C and N2 production yields were close to 1 in all assays. The denitrifying sludge could biodegrade up to 10 mg E2-C L-1 as the sole electron donor and when mixed with 10 mg CH3COO--C L-1. No intermediate metabolites were generated from the process.
Assuntos
Ecossistema , Esgotos , Estradiol/metabolismo , Estrogênios/metabolismo , Biotransformação , Ampicilina , ÁguaRESUMO
Human beings and wild organisms are exposed daily to a broad range of environmental stressors. Among them are the persistent organic pollutants that can trigger adverse effects on these organisms due to their toxicity properties. There is evidence that metabolomics can be used to identify biomarkers of effect by altering the profiles of endogenous metabolites in biological fluids or tissues. This approach is relatively new and has been used in vitro studies mainly. Therefore, this review addresses those that have used metabolomics as a key tool to identify metabolites associated with environmental exposure to POPs in wildlife and human populations and that can be used as biomarkers of effect. The published results suggest that the metabolic pathways that produce energy, fatty acids, and amino acids are commonly affected by POPs. Furthermore, these pathways can be promoters of additional effects. In the future, metabolomics combined with other omics will improve understanding of the origin, development, and progression of the effects caused by environmental exposure.
RESUMO
The impact of the antibiotic ampicillin (AMP) on the metabolic and kinetics of denitrification process as well as the sludge ability for oxidizing it was evaluated in batch assays. Denitrifying reference assays with acetate-C and nitrate-N (C/N ratio of 1.1) were conducted for establishing the metabolic and kinetic performance of the denitrifying sludge. Assays amended with 10 mg AMP-C L-1 were also performed. In reference assays, acetate and nitrate consumption efficiencies of 100% with a total conversion to HCO3- and N2 were achieved within 1.5 h. When 10 mg AMP-C L-1 was added, total and simultaneous consumption of nitrate-N, acetate-C, and AMP-C was achieved within 12 h. The substrates were completely reduced to N2 and oxidized to HCO3-, respectively. No nitrite-N was registered at the end of culture. AMP caused a reversible inhibitory effect on specific nitrate and acetate consumption and N2 production rates. Complete consumption and mineralization of AMP associated to nitrate reduction to N2 were achieved. This work provides the first evidences on the metabolic and kinetic performance of a denitrifying sludge exposed to AMP. These results might be considered for proposing useful wastewater treatments where ß-Lactam antibiotics can be present.
Assuntos
Ampicilina/metabolismo , Ampicilina/farmacologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Desnitrificação/efeitos dos fármacos , Minerais/metabolismo , Esgotos , Acetatos/metabolismo , Relação Dose-Resposta a Droga , CinéticaRESUMO
This study evaluated the genotoxic impact of anthropic activities in Huactzinco Spring, using Cyprinus carpio as a biomonitor. In situ and in vivo experimental designs were compared by means of simultaneous 2-week exposures. The water from the spring generated mean micronuclei frequency values (108.6 ± 32 MN/1,000) and DNA fragmentation values (143.4 ± 35 au) which were statistically higher than those for the negative control (10.9 ± 6 MN/1,000 and 67.6 ± 23 au). The in situ and in vivo experiments supported one another. The comet assay proved to be the most sensitive test, with an EC50 value (11.4 % ± 3.4 %) being less than that determined for the micronuclei test (54.8 % ± 3.2 %). The results of this study confirm the usefulness of C. carpio as an environmental contamination biomonitor, and suggest that Huactzinco Spring water constitutes a latent risk to human health and the environment.