Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 40, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393447

RESUMO

Enterococci are ubiquitous microorganisms in almost all environments, from the soil we step on to the food we eat. They are frequently found in naturally fermented foods, contributing to ripening through protein, lipid, and sugar metabolism. On the other hand, these organisms are also leading the current antibiotic resistance crisis. In this study, we performed whole-genome sequencing and comparative genomics of an Enterococcus faecium strain isolated from an artisanal Mexican Cotija cheese, namely QD-2. We found clear genomic differences between commensal and pathogenic strains, particularly in their carbohydrate metabolic pathways, resistance to vancomycin and other antibiotics, bacteriocin production, and bacteriophage and CRISPR content. Furthermore, a bacteriocin transcription analysis performed by RT-qPCR revealed that, at the end of the log phase, besides enterocins A and X, two putative bacteriocins not reported previously are also transcribed as a bicistronic operon in E. faecium QD-2, and are expressed 1.5 times higher than enterocin A when cultured in MRS broth.


Assuntos
Bacteriocinas , Queijo , Enterococcus faecium , Bacteriocinas/metabolismo , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Enterococcus/genética , Genômica
2.
Acta Histochem ; 125(7): 152092, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37717384

RESUMO

In maize, immunoprecipitation assays have shown that CycD2;2 interacts with KRPs. However, evidence on CycD2;2 or KRPs localization and their possible interaction in specific tissues is lacking and its physiological consequence is still unknown. This work explores the spatiotemporal presence of CyclinD2s and KRPs, cell cycle regulators, during maize seed germination (18 and 36 h) after soaking on glucose or sucrose (120 mM). CyclinD2s are positive actors driving proliferation; KRPs are inhibitors of the main kinase controlling proliferation (a negative signal that slows down the cell cycle). Cell cycle proteins were analyzed by immunolocalization on longitudinal sections of maize embryo axis in seven different tissues or zones (with different proliferation or differentiation potential) and in the nucleus of their cells. Results showed a prevalence of these cell cycle proteins on embryo axes from dry seeds, particularly, their accumulation in nuclei of radicle cells. The absence of sugar caused the accumulation of these regulators in different proliferating zones. CyclinD2 abundance was reduced during germination in the presence of sucrose along the embryo axis, while there was an increase at 36 h on glucose. KRP proteins showed a slight increase at 18 h and a decrease at 36 h on both sugars. There was no correlation between cell cycle regulators/DNA co-localization on both sugars. Results suggest glucose induced a specific accumulation of each cell cycle regulator depending on the proliferation zone as well as nuclear localization which may reflect the differential morphogenetic program regarding the proliferation potential in each zone, while sucrose has a mild influence on both cell cycle proteins accumulation during germination. Whenever CycD2s were present in the nucleus, KRPs were absent after treatment with either sugar and at the two imbibition times analyzed, along the different embryo axe zones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA