Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Metabolites ; 14(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057681

RESUMO

Metabolic syndrome (MetS) is a group of clinical traits directly linked to type 2 diabetes mellitus and cardiovascular diseases, whose prevalence has been rising nationally and internationally. We aimed to evaluate ten known and novel surrogate markers of insulin resistance and obesity to identify MetS in Mexican adults. The present cross-sectional study analyzed 10575 participants from ENSANUT-2018. The diagnosis of MetS was based on the Adult Treatment Panel III (ATP III) criteria and International Diabetes Federation (IDF) criteria, stratified by sex and age group. According to ATP III, the best biomarker was the metabolic score for insulin resistance (METS-IR) in men aged 20-39 and 40-59 years and lipid accumulation product (LAP) in those aged ≥60 years. The best biomarker was LAP in women aged 20-39 and triglyceride-glucose index (TyG) in those aged 40-59 and ≥60 years. Using the IDF criteria, the best biomarker was LAP in men of all ages. TyG gave the best results in women of all ages. The best biomarker for diagnosis of MetS in Mexican adults depends on the criteria, including sex and age group. LAP and TyG are easy to obtain, inexpensive, and especially useful at the primary care level.

2.
Biology (Basel) ; 13(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38927262

RESUMO

Currently, it is known that angiotensin II (AngII) induces inflammation, and an AT1R blockade has anti-inflammatory effects. The use of an AT1 receptor antagonist promotes the inhibition of the secretion of multiple proinflammatory cytokines in macrophages, as well as a decrease in the concentration of reactive oxygen species. The aim of this study was to determine the effect of AT1 receptor gene silencing on the modulation of cytokines (e.g., IL-1ß, TNF-α, and IL-10) in THP-1 macrophages and the relation to the gene expression of NF-κB. MATERIALS AND METHODS: We evaluated the gene expression of PPAR-γ in THP-1 macrophages using PMA (60 ng/mL). For the silencing, cells were incubated with the siRNA for 72 h and telmisartan (10 µM) was added to the medium for 24 h. After that, cells were incubated during 1 and 24 h, respectively, with Ang II (1 µM). The gene expression levels of AT1R, NF-κB, and cytokines (IL-1ß, TNF-α, and IL-10) were measured by RT-qPCR. RESULTS: We observed that silencing of the AT1 receptor causes a decrease in the expression of mRNA of proinflammatory cytokines (IL-1ß and TNF-α), NF-κB, and PPAR-γ. CONCLUSIONS: We conclude that AT1R gene silencing is an alternative to modulating the production of proinflammatory cytokines such as TNF-α and IL-1ß via NF-κB in macrophages and having high blood pressure decrease.

3.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399437

RESUMO

Previous studies provided evidence of the benefits of omega-3 polyunsaturated fatty acids (ω-3 PUFA) on the cardiovascular system and inflammation. However, its possible effect on skeletal muscle is unknown. This study aimed to evaluate whether ω-3 PUFA reverses the dysregulation of metabolic modulators in the skeletal muscle of rats on a high-fat obesogenic diet. For this purpose, an animal model was developed using male Wistar rats with a high-fat diet (HFD) and subsequently supplemented with ω-3 PUFA. Insulin resistance was assessed, and gene and protein expression of metabolism modulators in skeletal muscle was also calculated using PCR-RT and Western blot. Our results confirmed that in HFD rats, zoometric parameters and insulin resistance were increased compared to SD rats. Furthermore, we demonstrate reduced gene and protein expression of peroxisome proliferator-activated receptors (PPARs) and insulin signaling molecules. After ω-3 PUFA supplementation, we observed that glucose (24.34%), triglycerides (35.78%), and HOMA-IR (40.10%) were reduced, and QUICKI (12.16%) increased compared to HFD rats. Furthermore, in skeletal muscle, we detected increased gene and protein expression of PPAR-α, PPAR-γ, insulin receptor (INSR), insulin receptor substrate 1 (ISR-1), phosphatidylinositol-3-kinase (PI3K), and glucose transporter 4 (GLUT-4). These findings suggest that ω-3 PUFAs decrease insulin resistance of obese skeletal muscle.

4.
Nutrients ; 16(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38337625

RESUMO

Asthma is one of the most common chronic non-communicable diseases worldwide, characterized by variable airflow limitation secondary to airway narrowing, airway wall thickening, and increased mucus resulting from chronic inflammation and airway remodeling. Current epidemiological studies reported that hypovitaminosis D is frequent in patients with asthma and is associated with worsening the disease and that supplementation with vitamin D3 improves asthma symptoms. However, despite several advances in the field, the molecular mechanisms of asthma have yet to be comprehensively understood. MicroRNAs play an important role in controlling several biological processes and their deregulation is implicated in diverse diseases, including asthma. Evidence supports that the dysregulation of miR-21, miR-27b, miR-145, miR-146a, and miR-155 leads to disbalance of Th1/Th2 cells, inflammation, and airway remodeling, resulting in exacerbation of asthma. This review addresses how these molecular mechanisms explain the development of asthma and its exacerbation and how vitamin D3 may modulate these microRNAs to improve asthma symptoms.


Assuntos
Asma , MicroRNAs , Humanos , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , MicroRNAs/genética , Remodelação das Vias Aéreas , Asma/tratamento farmacológico , Asma/genética , Asma/complicações , Pulmão , Inflamação/complicações , Suplementos Nutricionais
5.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37630993

RESUMO

Pain represents one of the leading causes of suffering and disability worldwide. Currently available drugs cannot treat all types of pain and may have adverse effects. Hence, the use of pharmacological combinations is an alternative treatment strategy. Therefore, this study aimed to evaluate the combination of resveratrol and ketorolac through isobolographic analysis. CD1 mice were used to study the antinociceptive effect of this combination using the formalin test and the study was divided into two phases. In the first phase, four individual doses of each drug were evaluated, totaling eight testing groups. From these data, the median effective doses (ED50) of each drug were calculated. In the second phase, four testing groups were used to evaluate the combination of sub-doses of both drugs and obtain the experimental ED50. To evaluate gastric damage, five groups were employed, including indomethacin, vehicle, resveratrol, ketorolac, and combined resveratrol and ketorolac groups. Stomach samples from the mice were taken after 5 h of treatment, and the area of the ulcers was determined. Resveratrol plus ketorolac elicited a reduction in nociceptive behavior during both phases of the formalin test, and isobologram analysis revealed that the theoretical and experimental ED50 values of resveratrol and ketorolac did not differ significantly, implying an additive interaction between the drugs. Additionally, the drug combination did not generate gastric ulcers, thus enhancing the desired effects without increasing the adverse effects. Consequently, these findings substantiate the efficacy of the resveratrol and ketorolac combination in the formalin test, thereby highlighting its potential as a viable alternative for alleviating pain.

6.
Int J Mol Sci ; 24(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37510995

RESUMO

Glycine is a non-essential amino acid with many functions and effects. Glycine can bind to specific receptors and transporters that are expressed in many types of cells throughout an organism to exert its effects. There have been many studies focused on the anti-inflammatory effects of glycine, including its abilities to decrease pro-inflammatory cytokines and the concentration of free fatty acids, to improve the insulin response, and to mediate other changes. However, the mechanism through which glycine acts is not clear. In this review, we emphasize that glycine exerts its anti-inflammatory effects throughout the modulation of the expression of nuclear factor kappa B (NF-κB) in many cells. Although glycine is a non-essential amino acid, we highlight how dietary glycine supplementation is important in avoiding the development of chronic inflammation.


Assuntos
Glicina , Oligoelementos , Humanos , Glicina/farmacologia , Glicina/uso terapêutico , Micronutrientes/uso terapêutico , Citocinas/metabolismo , NF-kappa B/metabolismo , Aminoácidos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Oligoelementos/uso terapêutico
7.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047453

RESUMO

Asthma is a heterogeneous entity encompassing distinct endotypes and varying phenotypes, characterized by common clinical manifestations, such as shortness of breath, wheezing, and variable airflow obstruction. Two major asthma endotypes based on molecular patterns are described: type 2 endotype (allergic-asthma) and T2 low endotype (obesity-related asthma). Long noncoding RNAs (lncRNAs) are transcripts of more than 200 nucleotides in length, currently involved in many diverse biological functions, such as chromatin remodeling, gene transcription, protein transport, and microRNA processing. Despite the efforts to accurately classify and discriminate all the asthma endotypes and phenotypes, if long noncoding RNAs could play a role as biomarkers in allergic asthmatic and adolescent obesity-related asthma, adolescents remain unknown. To compare expression levels of lncRNAs: HOTAIRM1, OIP5-AS1, MZF1-AS1, and GAS5 from whole blood of Healthy Adolescents (HA), Obese adolescents (O), allergic asthmatic adolescents (AA) and Obesity-related asthma adolescents (OA). We measured and compared expression levels from the whole blood of the groups mentioned above through RT-q-PCR. We found differentially expressed levels of these lncRNAs between the groups of interest. In addition, we found a discriminative value of previously mentioned lncRNAs between studied groups. Finally, we generated an interaction network through bioinformatics. Expression levels of OIP5-AS1, MZF1-AS1, HOTAIRM1, and GAS5 in whole blood from the healthy adolescent population, obese adolescents, allergic asthma adolescents, and obesity-related asthma adolescents are differently expressed. Moreover, these lncRNAs could act as molecular biomarkers that help to discriminate between all studied groups, probably through molecular mechanisms with several genes and miRNAs implicated.


Assuntos
Asma , MicroRNAs , Obesidade Infantil , RNA Longo não Codificante , Adolescente , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Obesidade Infantil/complicações , Obesidade Infantil/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Asma/genética , Biomarcadores , Proliferação de Células/genética , Fatores de Transcrição Kruppel-Like
8.
Life (Basel) ; 12(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36362842

RESUMO

BACKGROUND: Chronic or low-grade inflammation is a process where various immune cells are recruited from the periphery into adipose tissue. This event gives rise to localised inflammation, in addition to having a close interaction with cardiometabolic pathologies where the mediation of orphan receptors is observed. The aim of this study was to analyse the participation of the orphan receptors GPR21, GPR39, GPR82 and GPR6 in a chronic inflammatory process in 3T3-L1 cells. The 3T3-L1 cells were stimulated with TNF-α (5 ng/mL) for 60 min as an inflammatory model. Gene expression was measured by RT-qPCR. RESULTS: We showed that the inflammatory stimulus of TNF-α in adipocytes decreased the expression of the orphan receptors GPR21, GPR26, GPR39, GPR82 and GPR6, which are related to low-grade inflammation. CONCLUSIONS: Our results suggest that GPR21 and GPR82 are modulated by glycine, it shows a possible protective role in the presence of an inflammatory environment in adipocytes, and they could be a therapeutic target to decrease the inflammation in some diseases related to low-grade inflammation such as diabetes, obesity and metabolic syndrome.

9.
J Drug Target ; 30(6): 673-686, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35289235

RESUMO

Diabetes is a disease that leads to proliferative diabetic retinopathy (PDR), which is associated with an increase of new vessels formation due to an overexpression of angiogenic factors, such as angiopoietin 2 (ANGPT2). The aim of this work was to design a siRNA targeting ANGPT2 to decrease the retinal neovascularization associated with PDR. Adult male Wistar rats weighing 325-375 g were used. Diabetes was induced by a single dose of streptozotocin (STZ, 60 mg/kg i.p.). The siRNAs were designed, synthesised, and administered intravitreally at the beginning of diabetes induction (t0), and after 4 weeks of diabetes evolution (t4), subsequently evaluated the retinal neovascularization (junctions and lacunarity) and ANGPT2 expression in the retina by RT-PCR, after 4 weeks of the siRNAs administration. The results showed that the administration of STZ produced significant increases in blood glucose levels, retinal neovascularization (augmented junctions and lower lacunarity), and ANGPT2 expression, while the administration of the ANGPT2-siRNAs at different groups (t0 and t4) reduces the junctions and increases the lacunarity in diabetic rats. Therefore, we conclude that the administration of siRNAs targeting ANGPT2 could be an option to decrease the retinal neovascularization associated with PDR and halt the progression of blindness caused by diabetes.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Neovascularização Retiniana , Angiopoietina-2/genética , Animais , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/genética , Masculino , Neovascularização Patológica/genética , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Wistar , Retina/metabolismo , Neovascularização Retiniana/complicações , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Estreptozocina
10.
Heliyon ; 8(12): e12316, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590520

RESUMO

A higher Th17-immune response characterises obesity and obesity-related asthma phenotype. Nevertheless, obesity-related asthma has a more significant Th17-immune response than obesity alone. Retinoid-related orphan receptor C (RORC) is the essential transcription factor for Th17 polarisation. Previous studies have found that adolescents with obesity-related asthma presented upregulation of RORC, IL17A, and TNFA. However, the mechanisms that cause these higher mRNA expression levels in this asthmatic phenotype are poorly understood. Methylation directly regulates gene expression by adding a methyl group to carbon 5 of dinucleotide CpG cytosine. Thus, we evaluated the relationship between RORC, IL17A, and TNFA methylation status and mRNA expression levels to investigate a possible epigenetic regulation. A total of 102 adolescents (11-18 years) were studied in the following four groups: 1) healthy participants (HP), 2) allergic asthmatic participants (AAP), 3) obese participants without asthma (OP), and 4) non-allergic obesity-related asthma participants (OAP). Real-time qPCR assessed the methylation status and gene expression levels in peripheral blood leukocytes. Remarkably, the OAP and AAP groups have lower promoter methylation patterns of RORC, IL17A, and TNFA than the HP group. Notably, the OAP group presents lower RORC promoter methylation status than the OP group. Interestingly, RORC promoter methylation status was moderately negatively associated with gene expression of RORC (r s = -0.39, p < 0.001) and IL17A (r s = -0.37, p < 0.01), respectively. Similarly, the promoter methylation pattern of IL17A was moderately negatively correlated with IL17A gene expression (r s = -0.3, p < 0.01). There is also a moderate inverse relationship between TNFA promoter methylation status and TNFA gene expression (r s = -0.3, p < 0.01). The present study suggests an association between lower RORC, IL17A, and TNFA gene promoter methylation status with obesity-related asthma and allergic asthma. RORC, IL17A, and TNFA gene promoter methylation patterns are moderately inversely correlated with their respective mRNA expression levels. Therefore, DNA methylation may regulate RORC, IL17A, and TNF gene expression in both asthmatic phenotypes.

11.
Allergol Immunopathol (Madr) ; 49(3): 21-29, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33938185

RESUMO

BACKGROUND: Non-allergic asthma caused by obesity is a complication of the low-grade chronic inflammation inherent in obesity. Consequently, the serum concentrations of adipokines such as retinol-binding protein 4 (RBP4) and plasminogen activator inhibitor-1 (PAI-1) increase. No gold standard molecule for the prediction of non-allergic asthma among obese patients has been identified. OBJECTIVE: To evaluate RBP4 and PAI-1 as prognostic biomarkers of non-allergic asthma caused by obesity. METHODS: A cross-sectional study between four groups of adolescents: (1) healthy (n = 35), (2) allergic asthma without obesity (n = 28), (3) obesity without asthma (n = 33), and (4) non-allergic asthma with obesity (n = 18). RESULTS: RBP4 was higher in the non-allergic asthma with obesity group than in the obesity without asthma group (39.2 ng/mL [95% confidence interval (CI): 23.8-76.0] vs. 23.5 ng/mL [95% CI: 3.2-33.5], p < 0.01), and PAI-1 was higher in the non-allergic asthma with obesity group than in the obesity without asthma group (21.9 ng/mL [95% CI: 15.7-26.5] vs. 15.9 ng/mL [95% CI: 9.4-18.2], p < 0.05). Receiver operating characteristic (ROC) curve analysis demonstrated that the serum RBP4 cut-off value was >42.78 ng/mL, with an area under the ROC curve (AUC) of 0.741 (95% CI: 0.599-0.853, p = 0.001), considered acceptable. The PAI-1 cut-off value was >12.0 ng/mL, with an AUC of 0.699 (95% CI: 0.554-0.819, p = 0.008), considered fair. CONCLUSIONS: RBP4 may be useful to predict non-allergic asthma among obese adolescents in clinical practice.


Assuntos
Asma/sangue , Obesidade Infantil/complicações , Inibidor 1 de Ativador de Plasminogênio/sangue , Proteínas Plasmáticas de Ligação ao Retinol/análise , Adolescente , Asma/etiologia , Biomarcadores/sangue , Índice de Massa Corporal , Criança , Intervalos de Confiança , Estudos Transversais , Feminino , Humanos , Masculino , Obesidade Infantil/sangue , Prognóstico , Curva ROC
12.
Inflamm Res ; 70(5): 605-618, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33877377

RESUMO

OBJECTIVE: To determine the involvement of TNF-α and glycine receptors in the inhibition of pro-inflammatory adipokines in 3T3-L1 cells. METHODS: RT-PCR evidenced glycine receptors in 3T3-L1 adipocytes. 3T3-L1 cells were transfected with siRNA for the glycine (Glrb) and TNF1a (Tnfrsf1a) receptors and confirmed by confocal microscopy. Transfected cells were treated with glycine (10 mM). The expressions of TNF-α and IL-6 mRNA were measured by qRT-PCR, while concentrations were quantified by ELISA. RESULTS: Glycine decreased the expression and concentration of TNF-α and IL-6; this effect did not occur in the absence of TNF-α receptor due to siRNA. In contrast, glycine produced only slight changes in the expression of TNF-α and IL-6 in the absence of the glycine receptor due to siRNA. A docking analysis confirmed the possibility of binding glycine to the TNF-α1a receptor. CONCLUSION: These findings support the idea that glycine could partially inhibit the binding of TNF-α to its receptor and provide clues about the mechanisms by which glycine inhibits the secretion of pro-inflammatory adipokines in adipocytes through the TNF-α receptor.


Assuntos
Adipócitos/metabolismo , Citocinas/metabolismo , Glicina/farmacologia , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Células 3T3-L1 , Adiponectina/genética , Animais , Citocinas/genética , Expressão Gênica , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Receptores de Glicina/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética
13.
Clin Immunol ; 229: 108715, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33771687

RESUMO

Obesity is associated with a unique non-T2 asthma phenotype, characterised by a Th17 immune response. Retinoid-related orphan receptor C (RORC) is the master transcription factor for Th17 polarisation. We investigated the association of TNFA, IL17A, and RORC mRNA expression levels with the non-T2 phenotype. We conducted a cross-sectional study in adolescents, subdivided as follows: healthy (HA), allergic asthma without obesity (AA), obesity without asthma (OB), and non-allergic asthma with obesity (NAO). TNFA, IL17A, and RORC mRNA expression in peripheral blood leukocytes were assessed by RT-PCR. NAO exhibited higher TNFA mRNA expression levels than HA or OB, as well as the highest IL17A and RORC mRNA expression levels among the four groups. The best biomarker for discriminating non-allergic asthma among obese adolescents was RORC mRNA expression levels (area under the curve: 0.95). RORC mRNA expression levels were associated with the non-T2 asthma phenotype, hinting at a therapeutic target in obesity-related asthma.


Assuntos
Asma/complicações , Asma/imunologia , Interleucina-17/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Obesidade/complicações , Obesidade/imunologia , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/genética , Adolescente , Asma/genética , Biomarcadores/sangue , Criança , Estudos Transversais , Feminino , Expressão Gênica , Humanos , Interleucina-17/sangue , Leucócitos/imunologia , Masculino , Obesidade/genética , Fenótipo , RNA Mensageiro/sangue , Células Th17/imunologia , Fator de Necrose Tumoral alfa/sangue
14.
Steroids ; 167: 108779, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33383063

RESUMO

BACKGROUND: Cardiovascular disease is more frequent in menopausal women, which has been related to factor such as weight gain, altered fat distribution, and increased inflammation markers including adipokines (MCP-1, TNF-α, IL-6) and cytokines (IL-1, IL-6, TNF-α) produced by macrophages. In addition to their phagocytic activity, macrophages secrete cytokines and chemokines that induces cell recruitment, which is a process related to vascular damage that favors the formation of atheromatous plaques. Tibolone (Tb) therapy is used to reduce the symptoms of menopause as well as osteoporosis and it has been shown to decreases the risk of fractures. METHODS: To investigate the effect of tibolone in macrophage enzymatic activity, gene expression of cytokines, and its effect on foam cells formation. We use phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells. The cells were incubated 24 h and 48 h using pre and post-treatment schemes. We evaluated total ROS determination by NBT assay, expression of cytokines (IL-1ß, IL-6, TNF-α, NOS2, ARG1, TGFß) by RT-qPCR and foam cell formation in THP-1 differentiated macrophages stimulated with PMA. RESULTS: It was observed that the minor levels of total ROS determination were obtained with tibolone at 48 h in post-treatment scheme. Also, in a long term we found decrease the proinflammatory cytokines (IL-1ß, IL-6 and TNF-α). Finally, with treatment for 24 h with P4 y Tb we observed fewer LDL vesicles into macrophages cytoplasm. CONCLUSIONS: These results suggest that tibolone reduces the inflammatory process, also inhibits the foam cells formation; suggesting a possible role in reducing cardiovascular risk.


Assuntos
Citocinas , Lipoproteínas LDL , Espécies Reativas de Oxigênio , Células Espumosas , Humanos , Células THP-1
16.
Med Hypotheses ; 134: 109527, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31877441

RESUMO

Obesity is a serious public health problem worldwide and has been associated in epidemiological studies with a unique type of non-atopic asthma, although the causal association of asthma and obesity has certain criteria, such as the strength of association, consistency, specificity, temporality, biological gradient, coherence, analogy and experimentation; nevertheless, the biological plausibility of this association remains uncertain. Various mechanisms have been postulated, such as immunological, hormonal, mechanical, environmental, genetic and epigenetic mechanisms. Our hypothesis favours immunological mechanisms because some cytokines, such as tumour necrosis factor alpha (TNF-α) and interleukin (IL)-17A, are responsible for orchestrating low-grade systemic inflammation associated with obesity; however, these cytokines are regulated by epigenetic mechanisms, such as gene promoter methylation.


Assuntos
Asma/etiologia , Metilação de DNA , Interleucina-17/genética , Modelos Imunológicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Obesidade/complicações , Regiões Promotoras Genéticas , Células Th17/metabolismo , Fator de Necrose Tumoral alfa/genética , Tecido Adiposo/metabolismo , Adolescente , Adulto , Animais , Asma/genética , Asma/imunologia , Causalidade , Criança , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação , Interleucina-23/fisiologia , Macrófagos/metabolismo , Masculino , Metanálise como Assunto , Camundongos , Pessoa de Meia-Idade , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Obesidade/imunologia , Fator de Necrose Tumoral alfa/fisiologia
17.
J Vasc Res ; 57(1): 1-7, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31266033

RESUMO

Metabolic syndrome (MS) is a clinical condition, constituted by alterations that lead to the onset of type II diabetes and cardiovascular disease. It has been reported that orphan G-protein-coupled receptor 82 (GPR82) participates in metabolic processes. The aim of this study was to evaluate the function of GPR82 in MS using a small interfering RNA (siRNA) against this receptor. We used Wistar rats of 10-12 weeks of age fed with a high-fructose solution (70%) for 9 weeks to induce MS. Subsequently, the rats were treated with an intrajugular dose of an siRNA against GPR82 and the effects were evaluated on day 3 and 7 after administration. On day 3 the siRNA had a transient effect on decreasing blood pressure and triglycerides and increasing high-density lipoprotein cholesterol, which recovered to the MS control on day 7. Decreased gene expressions of GPR82 mRNA in the aorta and heart were observed on day 3; moreover, decreased gene expression was maintained in the aorta on day 7. Therefore, we conclude that the orphan receptor GPR82 participates in the development of MS induced by fructose and the silencing of this receptor could ameliorate metabolic components.


Assuntos
Frutose/administração & dosagem , Síndrome Metabólica/etiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Carboidratos da Dieta/administração & dosagem , Masculino , Interferência de RNA , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Sístole , Triglicerídeos/sangue
18.
Int J Mol Sci ; 20(11)2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181590

RESUMO

In modern societies, high fructose intake from sugar-sweetened beverages has contributed to obesity development. In the diet, sucrose and high fructose corn syrup are the main sources of fructose and can be metabolized in the intestine and transported into the systemic circulation. The liver can metabolize around 70% of fructose intake, while the remaining is metabolized by other tissues. Several tissues including adipose tissue express the main fructose transporter GLUT5. In vivo, chronic fructose intake promotes white adipose tissue accumulation through activating adipogenesis. In vitro experiments have also demonstrated that fructose alone induces adipogenesis by several mechanisms, including (1) triglycerides and very-low-density lipoprotein (VLDL) production by fructose metabolism, (2) the stimulation of glucocorticoid activation by increasing 11ß-HSD1 activity, and (3) the promotion of reactive oxygen species (ROS) production through uric acid, NOX and XOR expression, mTORC1 signaling and Ang II induction. Moreover, it has been observed that fructose induces adipogenesis through increased ACE2 expression, which promotes high Ang-(1-7) levels, and through the inhibition of the thermogenic program by regulating Sirt1 and UCP1. Finally, microRNAs may also be involved in regulating adipogenesis in high fructose intake conditions. In this paper, we propose further directions for research in fructose participation in adipogenesis.


Assuntos
Adipogenia , Xarope de Milho Rico em Frutose/metabolismo , Obesidade/etiologia , Animais , Glucocorticoides/metabolismo , Xarope de Milho Rico em Frutose/efeitos adversos , Humanos , Metabolismo dos Lipídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo
19.
J Nutr Biochem ; 64: 162-169, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30513433

RESUMO

Obesity in adolescents is considered a major public health problem; combined interventional approaches such as omega-3 supplementation with lifestyle intervention (LI) might exert synergistic effects and exceed the impact of each individual strategy. The purpose of the present study was to evaluate if the supplementation of omega-3 with LI could improve metabolic and endothelial abnormality in obese adolescents with hypertriglyceridemia. The study involved sixty-nine adolescents with normal weight and seventy obese adolescents with hypertriglyceridemia. All obese adolescents were applied to LI and randomly assigned to omega-3 supplementation or placebo group for 12 weeks. The obese adolescents with hypertriglyceridemia presented increased levels of leptin, retinol binding protein 4 (RBP4), selectin E (sE) and asymmetric dimethylarginine (ADMA) and decreased levels of adiponectin compared with control subjects. After 12-week intervention, omega-3 supplementation with LI decreased significantly in triglycerides, HOMA, leptin, RBP4, ADMA and sE. Moreover, omega-3 with LI displayed a significant reduction in triglycerides, ADMA and sE in comparison with LI alone. In subjects with omega-3 combined with LI assessed by multivariate regression model, the reduction in triglycerides was the only independent determinant of the decrease in ADMA. The reductions in triglycerides and HOMA were significantly contributed to the changes in sE. Our data indicated that omega-3 combined with LI in short duration significantly improved dyslipidemia, insulin resistance, abnormality of adipokines, endothelial dysfunction in comparison of LI alone, indicating the combined approach is an effective clinical and applicable strategy to control metabolic abnormality and decrease the risks of cardiovascular diseases in obese adolescents.


Assuntos
Adipocinas/sangue , Ácidos Graxos Ômega-3/uso terapêutico , Hipertrigliceridemia/dietoterapia , Obesidade/terapia , Adolescente , Biomarcadores/sangue , Criança , Suplementos Nutricionais , Método Duplo-Cego , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Estilo de Vida Saudável , Humanos , Obesidade/fisiopatologia , Análise de Regressão , Resultado do Tratamento , Triglicerídeos/sangue
20.
J Recept Signal Transduct Res ; 37(4): 422-429, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28270014

RESUMO

AIMS: Metabolic syndrome (MS) is composed of several metabolic abnormalities that increase the risk of cardiovascular diseases and diabetes. Although there are treatments for the components of MS, this pathology maintains a high mortality, suggesting that there are other mechanisms in which orphan receptors such as GPR26 and GPR39 may be involved. For this reason, the aim of this work was to evaluate the expression of GPR26 and GPR39 orphan receptors in two models of MS (diet and genetics). MATERIALS AND METHODS: We used male Wistar rats, which received 70% fructose in drinking water for 9 weeks, and obese Zucker rats. We measured weight, blood pressure, glucose, triglycerides, total cholesterol, HDL cholesterol, LDL cholesterol to determine the MS and the expression of the orphan receptors GPR26 and GPR39 in brain, heart, aorta, liver, and kidney by RT-PCR. RESULTS: The analysis of the expression of the orphan receptors GPR26 and GPR39 showed that the receptors are expressed in some tissues, but the expression of the GPR26 tends to decrease in the heart and aorta, whereas in the brain, no changes were observed, this receptor is not expressed in the liver and kidney of both strains. The expression of GPR39 isoforms depends on the tissue and MS model. CONCLUSIONS: We conclude that the orphan receptors GPR26, GPR39v1, and GPR39v2 are expressed in different tissues and their profile expression is dependent on the etiology of the MS.


Assuntos
Síndrome Metabólica/genética , Obesidade/genética , Receptores Acoplados a Proteínas G/genética , Animais , Regulação da Expressão Gênica/genética , Glucose/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Síndrome Metabólica/sangue , Síndrome Metabólica/patologia , Obesidade/sangue , Obesidade/patologia , Ratos , Distribuição Tecidual , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA