Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Math Biosci Eng ; 19(7): 6860-6882, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35730286

RESUMO

Interactions between species are essential in ecosystems, but sometimes competition dominates over mutualism. The transition between mutualism-competition can have several implications and consequences, and it has hardly been studied in experimental settings. This work studies the mutualism between cross-feeding bacteria in strains that supply an essential amino acid for their mutualistic partner when both strains are exposed to antimicrobials. When the strains are free of antimicrobials, we found that, depending on the amount of amino acids freely available in the environment, the strains can exhibit extinction, mutualism, or competition. The availability of resources modulates the behavior of both species. When the strains are exposed to antimicrobials, the population dynamics depend on the proportion of bacteria resistant to the antimicrobial, finding that the extinction of both strains is eminent for low levels of the resource. In contrast, competition between both strains continues for high levels of the resource. An optimal control problem was then formulated to reduce the proportion of resistant bacteria, which showed that under cooperation, both strains (sensitive and resistant) are immediately controlled, while under competition, only the density of one of the strains is decreased. In contrast, its mutualist partner with control is increased. Finally, using our experimental data, we did parameters estimation in order to fit our mathematical model to the experimental data.


Assuntos
Microbiota , Simbiose , Bactérias , Teorema de Bayes , Dinâmica Populacional
2.
Antibiotics (Basel) ; 11(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35203815

RESUMO

This work aims to explain the behavior of the multi-drug resistance (MDR) percentage of Pseudomonas aeruginosa in Europe, through multivariate statistical analysis and machine learning validation, using data from the European Antimicrobial Resistance Surveillance System, the World Health Organization, and the World Bank. We ran a multidimensional data panel regression analysis and used machine learning techniques to validate a pooling panel data case. The results of our analysis showed that the most important variables explaining the MDR phenomena across European countries are governance variables, such as corruption control and the rule of law. The models proposed in this study showed the complexity of the antibiotic drugs resistance problem. The efforts controlling MDR P. aeruginosa, as a well-known Healthcare-Associated Infection (HCAI), should be focused on solving national governance problems that impact resource distribution, in addition to individual guidelines, such as promoting the appropriate use of antibiotics.

3.
PLoS One ; 17(2): e0263367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143548

RESUMO

This work presents a tool for forecasting the spread of the new coronavirus in Mexico City, which is based on a mathematical model with a metapopulation structure that uses Bayesian statistics and is inspired by a data-driven approach. The daily mobility of people in Mexico City is mathematically represented by an origin-destination matrix using the open mobility data from Google and the Transportation Mexican Survey. This matrix is incorporated in a compartmental model. We calibrate the model against borough-level incidence data collected between 27 February 2020 and 27 October 2020, while using Bayesian inference to estimate critical epidemiological characteristics associated with the coronavirus spread. Given that working with metapopulation models leads to rather high computational time consumption, and parameter estimation of these models may lead to high memory RAM consumption, we do a clustering analysis that is based on mobility trends to work on these clusters of borough separately instead of taken all of the boroughs together at once. This clustering analysis can be implemented in smaller or larger scales in different parts of the world. In addition, this clustering analysis is divided into the phases that the government of Mexico City has set up to restrict individual movement in the city. We also calculate the reproductive number in Mexico City using the next generation operator method and the inferred model parameters obtaining that this threshold is in the interval (1.2713, 1.3054). Our analysis of mobility trends can be helpful when making public health decisions.


Assuntos
COVID-19/epidemiologia , Meios de Transporte , Número Básico de Reprodução , Análise por Conglomerados , Geografia , Humanos , México/epidemiologia , Modelos Biológicos , Probabilidade , Reprodutibilidade dos Testes
4.
Math Biosci Eng ; 17(5): 4477-4499, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33120514

RESUMO

In this work, we study a mathematical model for the interaction of sensitive-resistant bacteria to antibiotics and analyse the effects of introducing random perturbations to this model. We compare the results of existence and stability of equilibrium solutions between the deterministic and stochastic formulations, and show that the conditions for the bacteria to die out are weaker in the stochastic model. Moreover, a corresponding optimal control problem is formulated for the unperturbed and the perturbed system, where the control variable is prophylaxis. The results of the optimal control problem reveal that, depending on the antibiotics, the costs of the prophylaxis, such as implementation, ordering and distribution, have to be much lower than the social costs, to achieve a bacterial resistance effective control.


Assuntos
Infecções Bacterianas , Modelos Teóricos , Antibacterianos/farmacologia , Bactérias , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle , Humanos , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA