Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Rev. argent. microbiol ; Rev. argent. microbiol;52(3): 111-120, Sept. 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1340910

RESUMO

Abstract Mine tailings contain high concentrations of heavy metals such as As, Pb, Cu, Mn, andFe, which are detrimental to the health of humans and the environment. In tailings at the ElFraile mine in Guerrero, Mexico, some plant species are apparently tolerant of heavy metals andcan be found growing in the tailings. These plants could be associating with heavy metal-tolerantbacteria that promote plant growth and improve biomass production, and these bacteria couldbe a useful alternative for bacteria-assisted phytoremediation. The objective of this study wasto isolate bacteria detected in the mine tailings at El Fraile-Taxco, focusing on those in the soilfrom the rhizosphere, the inner tissue of the root, leachate, and water, which have the poten-tial to promote plant growth. The ability of the isolated bacteria to promote plant growth wasevaluated in vitro. Of the 151 morphotypes isolated, 51% fix nitrogen, 12% dissolve phosphates,and 12%, 39.7%, and 48.3% produce indole acetic acid, gibberellins, and siderophores, respec-tively. In addition, 66.7% were observed to produce lytic enzymes, such as proteases, celluloses,lipases, esterases, and amylases, which exhibited activity against Fusarium, Aspergillus, andColletotrichum. The use of 16S rRNA analysis led to the identification of the bacterial generaChryseobacterium, Bacillus, Pseudomonas, Mycobacterium, Staphylococcus, Curtobacterium,Enterobacter, Agrobacterium, Ochrobactrum, Serratia, Stenotrophomonas, and Acinetobac-ter. The bacteria isolated from the rhizosphere exhibited the greatest ability to fix nitrogenand produced indole acetic acid, gibberellins, siderophore, and lytic enzymes. In addition, theisolates collected from the soil samples demonstrated ability to solubilize phosphate.


Resumen Los jales mineros contienen una alta concentración de metales pesados como As, Pb, Cu, Mn y Fe. Estas altas concentraciones de metales son perjudiciales para la salud humana y el medio ambiente. En los jales mineros de El Fraile, México, es posible detectar especies de plantas tolerantes a los metales pesados; estas plantas podrían estar asociadas con bacterias capaces de promover su crecimiento, además de poseer actividad antagonista contra hongos. El objetivo de este estudio fue aislar de diferentes microambientes (suelo rizosférico, tejido de raíz, lixiviado y agua) del área del jale El Fraile bacterias con potencial de promover el crecimiento vegetal y actividad antagonista contra hongos fitopatógenos. Estudios in vitro demostraron que el 51% de los morfotipos aislados (151 en total) fijan nitrógeno y el 12% disuelven fosfatos. Asimismo, el 12, 39,7 y 48,3% producen ácido indolacético, giberelinas y sideróforos, respectivamente. Por otro lado, se observó que el 66,7% producía enzimas líticas como proteasas, celulasas, lipasas, esterasas y amilasas, además de exhibir actividad antagonista contra Fusarium, Aspergillus y Colletotrichum. Mediante análisis del gen 16S ARNr, se identificó a estas bacterias como pertenecientes a los géneros Chryseobacterium, Bacillus, Pseudomonas, Mycobacterium, Staphylococcus, Curtobacterium, Enterobacter, Agrobacterium, Ochrobac-trum, Serratia, Stenotrophomonas y Acinetobacter. Las bacterias de la rizosfera exhibieron la mayor capacidad para fijar nitrógeno y produjeron ácido indolacético, giberelinas, sideróforos y enzimas líticas. Además, se detectó que las cepas aisladas de suelo rizosférico eran las que tenían la capacidad de solubilizar fosfatos.


Assuntos
Humanos , Bactérias , Rizosfera , Microbiologia do Solo , Biodegradação Ambiental , RNA Ribossômico 16S/genética , Raízes de Plantas , México
2.
Rev Argent Microbiol ; 52(3): 231-239, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31982186

RESUMO

Mine tailings contain high concentrations of heavy metals such as As, Pb, Cu, Mn, and Fe, which are detrimental to the health of humans and the environment. In tailings at the El Fraile mine in Guerrero, Mexico, some plant species are apparently tolerant of heavy metals and can be found growing in the tailings. These plants could be associating with heavy metal-tolerant bacteria that promote plant growth and improve biomass production, and these bacteria could be a useful alternative for bacteria-assisted phytoremediation. The objective of this study was to isolate bacteria detected in the mine tailings at El Fraile-Taxco, focusing on those in the soil from the rhizosphere, the inner tissue of the root, leachate, and water, which have the potential to promote plant growth. The ability of the isolated bacteria to promote plant growth was evaluated in vitro. Of the 151 morphotypes isolated, 51% fix nitrogen, 12% dissolve phosphates, and 12%, 39.7%, and 48.3% produce indole acetic acid, gibberellins, and siderophores, respectively. In addition, 66.7% were observed to produce lytic enzymes, such as proteases, celluloses, lipases, esterases, and amylases, which exhibited activity against Fusarium, Aspergillus, and Colletotrichum. The use of 16S rRNA analysis led to the identification of the bacterial genera Chryseobacterium, Bacillus, Pseudomonas, Mycobacterium, Staphylococcus, Curtobacterium, Enterobacter, Agrobacterium, Ochrobactrum, Serratia, Stenotrophomonas, and Acinetobacter. The bacteria isolated from the rhizosphere exhibited the greatest ability to fix nitrogen and produced indole acetic acid, gibberellins, siderophore, and lytic enzymes. In addition, the isolates collected from the soil samples demonstrated ability to solubilize phosphate.


Assuntos
Bactérias , Rizosfera , Biodegradação Ambiental , Humanos , México , Raízes de Plantas , RNA Ribossômico 16S/genética , Microbiologia do Solo
3.
Microorganisms ; 7(12)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861143

RESUMO

Micromycetes from unexplored sources represent an opportunity to discover novel natural products to control insect pests. With this aim, a strain of Acremonium masseei CICY026 isolated from a tropical sinkhole was identified, cultured on fermented rice, and its ethyl acetate extract (EAE) was evaluated against three serious phytophagous insects (Bemisia tabaci, Myzus persicae, and Rhopalosiphum padi). DNA from A. masseei CICY026 was used to confirm its identity. EAE caused settling inhibition (SI) of M. persicae and R. padi (67.5% and 75.3%, respectively). Bioassay-guided fractionation of the active EAE led to the isolation of a novel metabolite, named hexahydroacremonintriol (1), and of acremonin A glucoside (2). The structures of 1 and 2 were determined using IR, one- and two-dimensional NMR, HRMS, and confirmed by theoretical data. The aphid M. persicae was noticeably sensitive to 1 and 2 (SI: 55.6% and 67.2%, respectively), whereas R. padi was only slightly affected by 1 (SI: 59%). This new knowledge about mycobiota from these special sinkhole ecosystems will inform the development of new biorational pesticides.

4.
J Mol Model ; 21(8): 220, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26238086

RESUMO

Ommochromes are colored substances that apparently function as biological signals among arthropods and insects. These substances may prevent oxidative stress by scavenging free radicals. Two principal mechanisms exist for scavenging free radicals: the electron transfer and hydrogen atom transfer. In this investigation, a theoretical study of the antiradical capacity of five ommochromes was performed within the density functional theory framework. Vertical ionization energy and vertical electron affinity were used to study the electron transfer mechanism between ommochromes and four free radicals: CH3O•, NO2•, HO•, and HOO•. For the hydrogen transfer mechanism, dissociation energy (D0) and Gibbs free energy were calculated, taking into account hydrogen atoms at different positions in the ommochromes. Both mechanisms are thermodynamically possible. The best antiradical is ommatin D. The UV/VIS spectra for ommochromes were obtained with ommatin D registering as the ommochrome with the greatest λmax value. In summary, ommatin D is the best antiradical and also the redder molecule. These results are important and may help to elucidate the function of these molecules in the animal kingdom. Graphical abstract Ommochromes are red and yellow substances present in arthropods and insects. According with computational chemistry, these substances present the capacity of prevent oxidative stress since they scavenge free radicals. These results may help to elucidate the function of these molecules in the animal Kingdom.


Assuntos
Sequestradores de Radicais Livres , Radicais Livres/química , Fenotiazinas/química , Animais , Artrópodes , Termodinâmica
5.
J Agric Food Chem ; 53(16): 6276-80, 2005 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16076106

RESUMO

A whole plant chloroform-methanol extract of the orchid Epidendrum rigidum inhibited radicle growth of Amaranthus hypochondriacus seedlings (IC50 = 300 microg/mL). Bioassay-guided fractionation furnished four phytotoxins, namely, gigantol (1), batatasin III (2), 2,3-dimethoxy-9,10-dihydrophenathrene-4,7-diol (9), and 3,4,9-trimethoxyphenanthrene-2,5-diol (11), along with the known flavonoids apigenin, vitexin, and isovetin and the triterterpenoids 24,24-dimethyl-9,19-cyclolanostane-25-en-3beta-ol (14) and 24-methyl-9,19-cyclolanostane-25-en-3beta-ol (15). Stilbenoids 1, 2, 9, and 11 inhibited radicle growth of A. hypochondriacus with IC50 values of 0.65, 0.1, 0.12, and 5.9 microM, respectively. Foliar application of gigantol (1) at 1 microM to 4 week old seedlings of A. hypochondriacus reduced shoot elongation by 69% and fresh weight accumulation by 54%. Bibenzyls 1 and 2, as well as synthetic analogues 4'-hydroxy-3,3',5-trimethoxybibenzyl (3), 3,3',4',5-tetramethoxybibenzyl (4), 3,4'-dihydroxy-5-methoxybibenzyl (5), 3'-O-methylbatatasin III (6), 3,3',5-trihydroxybibenzyl (7), and 3,4',5-trihydroxybibenzyl (8), were tested for phytotoxicity in axenic cultures of the small aquatic plant Lemna pausicostata. All bibenzyls derivatives except 7 and 8 inhibited growth and increased cellular leakage with IC50 values of 89.9-180 and 89.9-166 microM, respectively. The natural and synthetic bibenzyls showed marginal cytotoxicity on animal cells. The results suggest that orchid bibenzyls may be good lead compounds for the development of novel herbicidal agents.


Assuntos
Bibenzilas/farmacologia , Herbicidas/farmacologia , Orchidaceae/química , Amaranthus/efeitos dos fármacos , Araceae/efeitos dos fármacos , Bibenzilas/isolamento & purificação , Fracionamento Químico , Guaiacol/análogos & derivados , Guaiacol/farmacologia , Herbicidas/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plântula/efeitos dos fármacos , Estilbenos/farmacologia
6.
J Nat Prod ; 67(2): 160-7, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14987052

RESUMO

A CH(2)Cl(2)-MeOH (1:1) extract prepared from the whole plant of Nidema boothii inhibited spontaneous contractions (IC(50) = 6.26 +/- 2.5 microg/mL) of the guinea-pig ileum. Bioassay-guided fractionation of the active extract led to the isolation of the novel spiro compound 1, which was given the trivial name nidemone, and the new dihydrophenanthrene 3, characterized as 1,5,7-trimethoxy-9,10-dihydrophenanthrene-2,6-diol. In addition, the known stilbenoids aloifol II (2), 1,5,7-trimethoxyphenanthrene-2,6-diol (4), ephemeranthoquinone (5), gigantol (6), ephemeranthol B (7), 2,4-dimethoxyphenanthrene-3,7-diol (8), lusianthridin (9), and batatasin III (10) were obtained. The isolates were characterized structurally by spectroscopic data interpretation. Compounds 2-6, 9, and 10 induced notable concentration-dependent inhibition of the spontaneous contractions of the guinea-pig ileum with IC(50) values that ranged between 0.14 and 2.36 microM. Bibenzyl analogues 23-35 were synthesized and tested pharmacologically. The results indicated that for maximum spasmolytic activity the bibenzyls should have oxygenated substituents on both aromatic rings; on the other hand, methylation of free hydroxyl groups as well as the increment of oxygenated groups in relation to compounds 6 and 10 decreased the smooth muscle relaxant activity. It was also demonstrated that bibenzyls 6 and 10 might exert their spasmolytic action not only by a nitrergic mechanism but also by inhibiting CaM-mediated processes.


Assuntos
Flavonoides/isolamento & purificação , Guaiacol/análogos & derivados , Contração Muscular/efeitos dos fármacos , Orchidaceae/química , Parassimpatolíticos/isolamento & purificação , Plantas Medicinais/química , Compostos de Espiro/isolamento & purificação , Estilbenos/isolamento & purificação , Animais , Bibenzilas , Encéfalo/efeitos dos fármacos , Bovinos , Relação Dose-Resposta a Droga , Flavonoides/química , Flavonoides/farmacologia , Guaiacol/química , Guaiacol/isolamento & purificação , Guaiacol/farmacologia , Cobaias , Íleo , Concentração Inibidora 50 , México , Modelos Biológicos , Conformação Molecular , Estrutura Molecular , Parassimpatolíticos/química , Parassimpatolíticos/farmacologia , Diester Fosfórico Hidrolases/efeitos dos fármacos , Diester Fosfórico Hidrolases/metabolismo , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Estilbenos/química , Estilbenos/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA