Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 52(1): 63-71, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32696418

RESUMO

The geographical distribution and ecological niche of the two circulating species of the Sporothrix genus in Venezuela was established. For this, 68 isolates of Sporothrix spp. from patients of different regions of the country were analyzed. A molecular taxonomy analysis was conducted using a fragment of the calmodulin gene (CAL), and ITS regions, confirming the presence of S. schenckii (62%) and S. globosa (38%). Computational models of ecological niche for each species were obtained by the maximum entropy method using the MaxEnt software, which predicted the best environmental conditions for the presence of the two species. These models predict that the main variables influencing the presence of S. schenckii were altitude and annual mean temperature, while for S. globosa, the more influent variable was the land use, with 82% of S. globosa located at urban areas vs 56% for S. schenckii. The results here presented could contribute to understand the specific environmental factors that might modulate the occurrence of Sporothrix spp. as well as its transmission. To our knowledge, our analyses show for the first time Sporothrix spp.-specific ecological niche data, a valuable tool to promote evidence-based public health policymaking within endemic areas of sporotrichosis.


Assuntos
Sporothrix/isolamento & purificação , Esporotricose/microbiologia , Ecossistema , Humanos , Modelos Biológicos , Filogenia , Sporothrix/classificação , Sporothrix/genética , Esporotricose/epidemiologia , População Urbana/estatística & dados numéricos , Venezuela/epidemiologia
2.
Viruses ; 6(6): 2416-27, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24956179

RESUMO

Bovine leukemia virus (BLV) and human T-lymphotropic virus type 1 (HTLV-1) are closely related d-retroviruses that induce hematological diseases. HTLV-1 infects about 15 million people worldwide, mainly in subtropical areas. HTLV-1 induces a wide spectrum of diseases (e.g., HTLV-associated myelopathy/tropical spastic paraparesis) and leukemia/lymphoma (adult T-cell leukemia). Bovine leukemia virus is a major pathogen of cattle, causing important economic losses due to a reduction in production, export limitations and lymphoma-associated death. In the absence of satisfactory treatment for these diseases and besides the prevention of transmission, the best option to reduce the prevalence of d-retroviruses is vaccination. Here, we provide an overview of the different vaccination strategies in the BLV model and outline key parameters required for vaccine efficacy.


Assuntos
Infecções por Deltaretrovirus/prevenção & controle , Deltaretrovirus/imunologia , Vacinação , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Bovinos , Deltaretrovirus/fisiologia , Infecções por Deltaretrovirus/virologia , Leucose Enzoótica Bovina/prevenção & controle , Leucose Enzoótica Bovina/virologia , Infecções por HTLV-I/prevenção & controle , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Vírus da Leucemia Bovina/imunologia , Vírus da Leucemia Bovina/fisiologia , Vacinas Atenuadas/imunologia
3.
J Gen Virol ; 90(Pt 11): 2788-2797, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19587134

RESUMO

Previous studies have classified the env sequences of bovine leukemia virus (BLV) provirus from different locations worldwide into between two and four genetic groupings. These different studies gave unique names to the identified groups and no study has yet integrated all the available sequences. Thus, we hypothesized that many of the different groups previously identified actually correspond to a limited group of genotypes that are unevenly distributed worldwide. To examine this hypothesis, we sequenced the env gene from 28 BLV field strains and compared these sequences to 46 env sequences that represent all the genetic groupings already identified. By using phylogenetic analyses, we recovered six clades, or genotypes, that we have called genotypes 1, 2, 3, 4, 5 and 6. Genotypes 1-5 have counterparts among the sequence groupings identified previously. One env sequence did not cluster with any of the others and was highly divergent when compared with the six genotypes identified here. Thus, an extra genotype, which we named 7, may exist. Similarity comparisons were highly congruent with phylogenetic analyses. Furthermore, our analyses confirmed the existence of geographical clusters.


Assuntos
Vírus da Leucemia Bovina/classificação , Vírus da Leucemia Bovina/genética , RNA Viral/genética , Animais , Bovinos , Análise por Conglomerados , Produtos do Gene env/genética , Genótipo , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
4.
PLoS One ; 3(10): e3429, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18941505

RESUMO

BACKGROUND: Cytotoxic T-Lymphocyte (CTL) response drives the evolution of HIV-1 at a host-level by selecting HLA-restricted escape mutations. Dissecting the dynamics of these escape mutations at a population-level would help to understand how HLA-mediated selection drives the evolution of HIV-1. METHODOLOGY/PRINCIPAL FINDINGS: We undertook a study of the dynamics of HIV-1 CTL-escape mutations by analyzing through statistical approaches and phylogenetic methods the viral gene gag sequenced in plasma samples collected between the years 1987 and 2006 from 302 drug-naïve HIV-positive patients. By applying logistic regression models and after performing correction for multiple test, we identified 22 potential CTL-escape mutations (p-value<0.05; q-value<0.2); 10 of these associations were confirmed in samples biologically independent by a Bayesian Markov Chain Monte-Carlo method. Analyzing their prevalence back in time we found that escape mutations that are the consensus residue in samples collected after 2003 have actually significantly increased in time in one of either B or F subtype until becoming the most frequent residue, while dominating the other viral subtype. Their estimated prevalence in the viral subtype they did not dominate was lower than 30% for the majority of samples collected at the end of the 80's. In addition, when screening the entire viral region, we found that the 75% of positions significantly changing in time (p<0.05) were located within known CTL epitopes. CONCLUSIONS: Across HIV Gag protein, the rise of polymorphisms from independent origin during the last twenty years of epidemic in our setting was related to an association with an HLA allele. The fact that these mutations accumulated in one of either B or F subtypes have also dominated the other subtype shows how this selection might be causing a convergence of viral subtypes to variants which are more likely to evade the immune response of the population where they circulate.


Assuntos
HIV-1/genética , Antígenos HLA/imunologia , Mutação , Seleção Genética , Antígenos Virais/genética , Evolução Biológica , Epitopos/genética , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , HIV-1/imunologia , Antígenos HLA-B/imunologia , Humanos , Imunidade , Modelos Estatísticos , Linfócitos T Citotóxicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA