Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 12: 775070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899395

RESUMO

The dorsal raphe (DR) nucleus is involved in a myriad of physiological functions, such as the control of sleep-wake cycle, motivation, pain, energy balance, and food intake. We have previously demonstrated that in ad libitum fed rats the intra-DR administration of phenylephrine, an α-1 receptor agonist, does not affect food intake, whereas clonidine, an α-2 receptor agonist, potently stimulates food intake. These results indicated that in fed rats an increased adrenergic tonus blocked food intake, since the activation of α-2 auto-receptors, which decreases pre-synaptic release of adrenaline/noradrenaline, affected food intake. Thus, in this study we assessed whether the response to adrenergic stimuli would differ after overnight fasting, a situation of low adrenergic activity in the DR. Intra-DR administration of adrenaline and noradrenaline blocked food intake evoked by overnight fasting. Similarly, phenylephrine administration decreased hunger-induced food intake. These changes in food intake were accompanied by changes in other behaviors, such as increased immobility time and feeding duration. On the other hand, intra-DR administration of clonidine did not affect food-intake or associated behaviors. These results further support the hypothesis that in fed animals, increased adrenergic tonus in DR neurons inhibiting feeding, while in fasted rats the adrenergic tonus decreases and favors food intake. These data indicate a possible mechanism through which adrenergic input to the DRN contributes to neurobiology of feeding.

2.
Brain Res ; 1739: 146857, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32348775

RESUMO

The central nervous system (CNS) is one of the first physiological systems to be affected in sepsis. During the exacerbated systemic inflammatory response at the early stage of sepsis, circulatory inflammatory mediators are able to reach the CNS leading to neuroinflammation and, consequently, long-term impairment in learning and memory formation is observed. The acute treatment with molecular hydrogen (H2) exerts important antioxidative, antiapoptotic, and anti-inflammatory effects in sepsis, but little is known about the mechanism itself and the efficacy of chronic H2 inhalation in sepsis treatment. Thus, we tested two hypotheses. We first hypothesized that chronic H2 inhalation is also an effective therapy to treat memory impairment induced by sepsis. The second hypothesis is that H2 treatment decreases sepsis-induced neuroinflammation in the hippocampus and prefrontal cortex, important areas related to short and long-term memory processing. Our results indicate that (1) chronic exposure of hydrogen gas is a simple, safe and promising therapeutic strategy to prevent memory loss in patients with sepsis and (2) acute H2 inhalation decreases neuroinflammation in memory-related areas and increases total nuclear factor E2-related factor 2 (Nrf2), a transcription factorthat regulates a vast group of antioxidant and inflammatory agents expression in these areas of septic animals.


Assuntos
Hidrogênio/farmacologia , Transtornos da Memória/terapia , Sepse/tratamento farmacológico , Administração por Inalação , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hidrogênio/metabolismo , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Masculino , Transtornos da Memória/metabolismo , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA