Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Mol Genet Genomics ; 299(1): 61, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806731

RESUMO

Salmonella enterica serovar Infantis (S. Infantis) is a globally distributed non-typhoid serovar infecting humans and food-producing animals. Considering the zoonotic potential and public health importance of this serovar, strategies to characterizing, monitor and control this pathogen are of great importance. This study aimed to determine the genetic relatedness of 80 Brazilian S. Infantis genomes in comparison to 40 non-Brazilian genomes from 14 countries using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Multi-Locus Virulence Sequence Typing (CRISPR-MVLST). CRISPR spacers were searched using CRISPR-Cas++ and fimH and sseL alleles using BLAST and MEGA X. Results were analyzed using BioNumerics 7.6 in order to obtain similarity dendrograms. A total of 23 CRISPR1 and 11 CRISPR2 alleles formed by 37 and 26 types of spacers, respectively, were detected. MVLST revealed the presence of five fimH and three sseL alleles. CRISPR's similarity dendrogram showed 32 strain subtypes, with an overall similarity ≥ 78.6. The CRISPR-MVLST similarity dendrogram showed 37 subtypes, with an overall similarity ≥ 79.2. In conclusion, S. Infantis strains isolated from diverse sources in Brazil and other countries presented a high genetic similarity according to CRISPR and CRISPR-MVLST, regardless of their source, year, and/or place of isolation. These results suggest that both methods might be useful for molecular typing S. Infantis strains using WGS data.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma Bacteriano , Salmonella enterica , Brasil , Salmonella enterica/genética , Salmonella enterica/classificação , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma Bacteriano/genética , Humanos , Filogenia , Tipagem de Sequências Multilocus , Animais , Sistemas CRISPR-Cas/genética , Sorogrupo
2.
PeerJ ; 12: e17306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784399

RESUMO

Background: Salmonella enterica serovar Infantis (Salmonella Infantis) is a zoonotic, ubiquitous and foodborne pathogen of worldwide distribution. Despite Brazil's relevance as a major meat exporter, few studies were conducted to characterize strains of this serovar by genomic analyses in this country. Therefore, this study aimed to assess the diversity of 80 Salmonella Infantis strains isolated from veterinary, food and human sources in Brazil between 2013 and 2018 by comparative genomic analyses. Additional genomes of non-Brazilian countries (n = 18) were included for comparison purposes in some analyses. Methods: Analyses of whole-genome multi-locus sequence typing (wgMLST), using PGAdb-builder, and of fragmented genomes, using Gegenees, were conducted to compare the 80 Brazilian strains to the 18 non-Brazilian genomes. Pangenome analyses and calculations were performed for all Salmonella Infantis genomes analyzed. The presence of prophages was determined using PHASTER for the 80 Brazilian strains. The genome plasticity using BLAST Ring Image Generator (BRIG) and gene synteny using Mauve were evaluated for 20 selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Unique orthologous protein clusters were searched in ten selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Results: wgMLST and Gegenees showed a high genomic similarity among some Brazilian Salmonella Infantis genomes, and also the correlation of some clusters with non-Brazilian genomes. Gegenees also showed an overall similarity >91% among all Salmonella Infantis genomes. Pangenome calculations revealed an open pangenome for all Salmonella Infantis subsets analyzed and a high gene content in the core genomes. Fifteen types of prophages were detected among 97.5% of the Brazilian strains. BRIG and Mauve demonstrated a high structural similarity among the Brazilian and non-Brazilian isolates. Unique orthologous protein clusters related to biological processes, molecular functions, and cellular components were detected among Brazilian and non-Brazilian genomes. Conclusion: The results presented using different genomic approaches emphasized the significant genomic similarity among Brazilian Salmonella Infantis genomes analyzed, suggesting wide distribution of closely related genotypes among diverse sources in Brazil. The data generated contributed to novel information regarding the genomic diversity of Brazilian and non-Brazilian Salmonella Infantis in comparison. The different genetically related subtypes of Salmonella Infantis from Brazil can either occur exclusively within the country, or also in other countries, suggesting that some exportation of the Brazilian genotypes may have already occurred.


Assuntos
Genoma Bacteriano , Genômica , Tipagem de Sequências Multilocus , Salmonella enterica , Brasil , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Genoma Bacteriano/genética , Humanos , Animais , Infecções por Salmonella/microbiologia , Infecções por Salmonella/epidemiologia , Sorogrupo , Microbiologia de Alimentos , Filogenia , Salmonelose Animal/microbiologia , Salmonelose Animal/epidemiologia
3.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38486350

RESUMO

AIMS: Although elasmobranchs are consumed worldwide, bacteriological assessments for this group are still sorely lacking. In this context, this study assessed bacteria of sharks and rays from one of the most important landing ports along the Rio de Janeiro coast. METHODS AND RESULTS: Bacteria were isolated from the cloacal swabs of the sampled elasmobranchs. They were cultured, and Vibrio, Aeromonas, and Enterobacterales were isolated and identified. The isolated bacteria were then biochemically identified and antimicrobial susceptibility assays were performed. Antigenic characterizations were performed for Salmonella spp. and Polymerase Chain Reaction (PCR) assays were performed to identify Escherichia coli pathotypes. Several bacteria of interest in the One Health context were detected. The most prevalent Enterobacterales were Morganella morganii and Citrobacter freundii, while Vibrio harveyi and Vibrio fluvialis were the most prevalent among Vibrio spp. and Aeromonas allosacharophila and Aeromonas veronii bv. veronii were the most frequent among Aeromonas spp. Several bacteria also displayed antimicrobial resistance, indicative of Public Health concerns. A total of 10% of Vibrio strains were resistant to trimethoprim-sulfamethoxazole and 40% displayed intermediate resistance to cefoxitin. Salmonella enterica strains displayed intermediate resistance to ciprofloxacin, nalidixic acid and streptomycin. All V. cholerae strains were identified as non-O1/non-O139. The detected E. coli strains did not exhibit pathogenicity genes. This is the first study to perform serology assessments for S. enterica subsp. enterica isolated from elasmobranchs, identifying the zoonotic Typhimurium serovar. Salmonella serology evaluations are, therefore, paramount to identify the importance of elasmobranchs in the epidemiological salmonellosis chain. CONCLUSIONS: The detection of several pathogenic and antibiotic-resistant bacteria may pose significant Public Health risks in Brazil, due to high elasmobranch consumption rates, indicating the urgent need for further bacteriological assessments in this group.


Assuntos
Aeromonas , Tubarões , Vibrio cholerae , Animais , Escherichia coli , Brasil , Salmonella/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Aeromonas/genética
4.
J Med Microbiol ; 73(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375878

RESUMO

Introduction. Salmonella 1,4, [5],12:i:- strains with different antimicrobial resistance profiles have been associated with foodborne disease outbreaks in several countries. In Brazil, S. 1,4, [5],12:i:- was identified as one of the most prevalent serovars in São Paulo State during 2004-2020.Gap Statement. However, few studies have characterized this serovar in Brazil.Aim. This study aimed to determine the antimicrobial resistance profiles of S. 1,4, [5],12:i:- strains isolated from different sources in Southeast Brazil and compare their genetic diversity.Methodology. We analysed 113 S. 1,4, [5],12:i:- strains isolated from humans (n=99), animals (n=7), food (n=5) and the environment (n=2) between 1983 and 2020. Susceptibility testing against 13 antimicrobials was performed using the disc diffusion method for all the strains. Plasmid resistance genes and mutations in the quinolone resistance-determining regions were identified in phenotypically fluoroquinolone-resistant strains. Molecular typing was performed using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) for all strains and multilocus sequence typing (MLST) for 40 selected strains.Results. Of the 113 strains, 54.87 % were resistant to at least one antimicrobial. The highest resistance rates were observed against ampicillin (51.33 %), nalidixic acid (39.82 %) and tetracycline (38.05 %). Additionally, 39 (34.51 %) strains were classified as multidrug-resistant (MDR). Nine fluoroquinolone-resistant strains exhibited the gyrA mutation (Ser96→Tyr96) and contained the qnrB gene. The 113 strains were grouped into two clusters using ERIC-PCR, and most of strains were present in one cluster, with a genetic similarity of ≥80 %. Finally, 40 strains were typed as ST19 using MLST.Conclusion. The prevalence of MDR strains is alarming because antimicrobial treatment against these strains may lead to therapeutic failure. Furthermore, the ERIC-PCR and MLST results suggested that most strains belonged to one main cluster. Thus, a prevalent subtype of Salmonella 1,4, [5],12:i:- strains has probably been circulating among different sources in São Paulo, Brazil, over decades.


Assuntos
Anti-Infecciosos , Salmonella , Humanos , Animais , Tipagem de Sequências Multilocus , Brasil/epidemiologia , Salmonella/genética , Antibacterianos/farmacologia , Fluoroquinolonas , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
5.
Braz J Microbiol ; 54(4): 2827-2843, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37817050

RESUMO

Salmonella 1,4, [5],12:i:- is one of the most prevalent serovars associated with gastroenteritis in several countries, including Brazil. However, few studies have analyzed the virulence potential of this variant in this country. Therefore, this study aimed to characterize S. 1,4, [5],12:i:- strains isolated in Southeast Brazil. To this end, 113 S. 1,4, [5],12:i:- strains isolated from different sources between 1983 and 2020 were analyzed. For all strains, the frequencies of 11 virulence genes were investigated using PCR and the molecular typing was performed using pulsed-field gel electrophoresis (PFGE). Furthermore, 40 strains isolated from human and non-human sources were characterized by survival under acid and oxidative stress, and virulence analysis in Galleria mellonella was performed for 20 selected strains. All virulence genes were detected in more than 91% of the strains. The studied strains were grouped into four clusters using PFGE. Most strains were present in one cluster, named PFGE-A, with a genetic similarity of ≥ 79.5%. All 40 strains survived acid stress after 10 min and 1 h of exposure. Under oxidative stress, all 40 strains survived after 10 min, and 36 survived after 1 h of exposure. In the G. mellonella assay, nine isolates from non-human sources and six isolates from human showed high-to-intermediate virulence profiles. In conclusion, the pathogenic potential of the strains studied was corroborated by the high frequency of all the virulence genes identified. The PFGE results suggested that most strains belonged to one main cluster that has been prevailing in the São Paulo State, Brazil. The S. 1,4, [5],12:i:- strains isolated from human and non-human sources successfully survived the unfavorable conditions in the human gastrointestinal tract. Finally, strains isolated from non-human sources showed a higher proportion of isolates with high to intermediate virulence profiles in G. mellonella than in human isolates, suggesting a possible difference between isolates from different origins.


Assuntos
Salmonella , Fatores de Virulência , Virulência/genética , Brasil , Salmonella/genética , Fatores de Virulência/genética , Tipagem Molecular , Eletroforese em Gel de Campo Pulsado
6.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37895901

RESUMO

Staphylococcus aureus is a microorganism with high morbidity and mortality due to antibiotic-resistant strains, making the search for new therapeutic options urgent. In this context, computational drug design can facilitate the drug discovery process, optimizing time and resources. In this work, computational methods involving ligand- and structure-based virtual screening were employed to identify potential antibacterial agents against the S. aureus MRSA and VRSA strains. To achieve this goal, tetrahydroxybenzofuran, a promising antibacterial agent according to in vitro tests described in the literature, was adopted as the pivotal molecule and derivative molecules were considered to generate a pharmacophore model, which was used to perform virtual screening on the Pharmit platform. Through this result, twenty-four molecules were selected from the MolPort® database. Using the Tanimoto Index on the BindingDB web server, it was possible to select eighteen molecules with greater structural similarity in relation to commercial antibiotics (methicillin and oxacillin). Predictions of toxicological and pharmacokinetic properties (ADME/Tox) using the eighteen most similar molecules, showed that only three exhibited desired properties (LB255, LB320 and LB415). In the molecular docking study, the promising molecules LB255, LB320 and LB415 showed significant values in both molecular targets. LB320 presented better binding affinity to MRSA (-8.18 kcal/mol) and VRSA (-8.01 kcal/mol) targets. Through PASS web server, the three molecules, specially LB320, showed potential for antibacterial activity. Synthetic accessibility (SA) analysis performed on AMBIT and SwissADME web servers showed that LB255 and LB415 can be considered difficult to synthesize and LB320 is considered easy. In conclusion, the results suggest that these ligands, particularly LB320, may bind strongly to the studied targets and may have appropriate ADME/Tox properties in experimental studies.

7.
Prev Vet Med ; 218: 105978, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37544079

RESUMO

Escherichia coli, an Enterobacterales member, is a normal representative of the microbiota of homeothermic animals. Most strains are commensal, but several pathotypes can cause disease, and numerous antimicrobial resistance factors have been identified. These bacteria have spread rapidly in recent years, highlighting the importance of screening the environment and non-human reservoirs for virulent strains and/or those presenting resistance factors, in addition to other microorganisms of public health importance. In this context, this study aimed to survey Enterobacteriales present in seabirds sampled along the Brazilian coast, comparing findings between migratory and resident birds, as well as between wrecked and non-wrecked animals. Escherichia coli pathotypes were also characterized through rapid seroagglutination and polymerase chain reaction techniques and antimicrobial resistance profiles were investigated through the disc agar diffusion method. Cloacal, ocular, oral, tracheal, and skin lesion swabs, as well as fresh feces, were collected from 122 seabirds. The findings indicate these animals as important hosts for opportunistic human pathogens. Escherichia coli strains were identified in 70 % of the analyzed seabirds, 62 % of which displaying resistant or intermediate profiles to at least one antimicrobial, while 7% were multiresistant. Resistance to tetracycline (22 %), nalidixic acid (15 %), trimethoprim-sulfamethozaxol (14 %) and ampicillin (12 %) were the most prevalent. Resistance to cefoxitin, a critically important antimicrobial for human medicine, was also detected. Virulence genes for one of the EAEC, ETEC or EPEC pathotypes were detected in 30 % of the identified strains, the first two described in seabirds for the first time. The EAEC gene was detected in 25 % of the sampled seabirds, all resident, 8 % of which exhibited a multidrug-resistant profile. Thus, seabirds comprise important reservoirs for this pathotype. Escherichia coli was proven an ubiquitous and well-distributed bacterium, present in all evaluated bird species and sampling sites (except Marajó Island). According to the chi-square test, no significant differences between E. coli prevalences or antimicrobial resistance profiles between migratory and resident and between wrecked and non-wrecked seabirds were observed. Thus, migratory birds do not seem to contribute significantly to E. coli frequencies, pathotypes or antimicrobial resistance rates on the Brazilian coast.

8.
Antibiotics (Basel) ; 12(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37627729

RESUMO

Salmonella Isangi is an infrequent serovar that has recently been reported in several countries due to nosocomial infections. A considerable number of reports indicate Salmonella Isangi multidrug resistance, especially to cephalosporins, which could potentially pose a risk to public health worldwide. Genomic analysis is an excellent tool for monitoring the emergence of microorganisms and related factors. In this context, the aim of this study was to carry out a genomic analysis of Salmonella Isangi isolated from poultry in Brazil, and to compare it with the available genomes from the Pathogen Detection database and Sequence Read Archive. A total of 142 genomes isolated from 11 different countries were investigated. A broad distribution of extended-spectrum beta-lactamase (ESBL) genes was identified in the Salmonella Isangi genomes examined (blaCTX-M-15, blaCTX-M-2, blaDHA-1, blaNDM-1, blaOXA-10, blaOXA-1, blaOXA-48, blaSCO-1, blaSHV-5, blaTEM-131, blaTEM-1B), primarily in South Africa. Resistome analysis revealed predicted resistance to aminoglycoside, sulfonamide, macrolide, tetracycline, trimethoprim, phenicol, chloramphenicol, and quaternary ammonium. Additionally, PMQR (plasmid-mediated quinolone resistance) genes qnr19, qnrB1, and qnrS1 were identified, along with point mutations in the genes gyrAD87N, gyrAS83F, and gyrBS464F, which confer resistance to ciprofloxacin and nalidixic acid. With regard to plasmids, we identified 17 different incompatibility groups, including IncC, Col(pHAD28), IncHI2, IncHI2A, IncM2, ColpVC, Col(Ye4449), Col156, IncR, IncI1(Alpha), IncFIB (pTU3), Col(B5512), IncQ1, IncL, IncN, IncFIB(pHCM2), and IncFIB (pN55391). Phylogenetic analysis revealed five clusters grouped by sequence type and antimicrobial gene distribution. The study highlights the need for monitoring rare serovars that may become emergent due to multidrug resistance.

9.
J Med Microbiol ; 72(7)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37462464

RESUMO

Introduction. Salmonella enterica serovar Isangi (S. Isangi) is a rare non-typhoidal serovar, related to invasive nosocomial infections in various countries and to increasing antimicrobial resistance rates.Gap statement. Despite existing reports on S. Isangi, there is a lack of information of specific traits regarding this serovar, which could be improved through genomic analyses.Aim. Our goals were to characterize the antimicrobial resistance, virulence potential and genomic relatedness of 11 S. Isangi strains from Brazil in comparison to 185 genomes of global isolates using whole-genome sequencing (WGS) data.Methodology. Phenotypic resistance was determined by disc-diffusion. The search for resistance genes, plasmids, prophages, Salmonella pathogenicity islands (SPIs) and virulence genes, plus multi-locus sequence typing (MLST) and core-genome MLST (cgMLST) were performed using WGS.Results. Brazilian S. Isangi strains showed phenotypic resistance to nalidixic acid, ciprofloxacin and streptomycin, and harboured antimicrobial resistance [qnrB19, aac(6')-Iaa, mdsAB] and heavy metal tolerance (arsD, golST) genes. Col(pHAD28) and IncFII(S) plasmids, virulence genes related to adherence, macrophage induction, magnesium uptake, regulation and type III secretion systems, 12 SPIs and eight prophages were detected. The 185 additional global genomes analysed harboured resistance genes against 11 classes of antimicrobial compounds, 22 types of plasmids, 32 prophages, 14 SPIs, and additional virulence genes related to serum resistance, stress adaptation and toxins. Sequence type (ST)216 was assigned to genomes from Brazil and other countries, while ST335 was the most frequent ST, especially among South African genomes. cgMLST showed that Brazilian genomes were more closely related to genomes from European and African countries, the USA and Taiwan, while the majority of South African genomes were more closely related among each other.Conclusion. The presence of S. Isangi strains from Brazil and different countries showing a close genomic correlation, antimicrobial resistance profiles to drugs used in human therapy and a large number of virulence determinants reinforced the need for stronger initiatives to monitor rare non-typhoidal Salmonella serovars such as S. Isangi in order to prevent its dissemination among human and non-human sources.


Assuntos
Antibacterianos , Salmonella enterica , Virulência/genética , Sorogrupo , Antibacterianos/farmacologia , Tipagem de Sequências Multilocus , Brasil/epidemiologia , Farmacorresistência Bacteriana/genética , Salmonella , Genômica , Salmonella enterica/genética , Farmacorresistência Bacteriana Múltipla/genética
10.
Curr Genet ; 69(2-3): 141-152, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36920496

RESUMO

Salmonella enterica serovar Heidelberg (S. Heidelberg) is a zoonotic, ubiquitous, and worldwide-distributed pathogen, responsible for gastroenteritis in humans caused by the consumption of contaminated food. In this study, 11 S. Heidelberg strains isolated from chicken and bovine meat, drag swab, and animal feed between 2013 and 2017 in states of the southern region of Brazil were characterized by whole-genome sequencing (WGS) analyses. Antimicrobial resistance against 18 antimicrobials was determined by disk-diffusion and ciprofloxacin's minimum inhibitory concentration by Etest®. The search for resistance and virulence genes, plasmids, Salmonella Pathogenicity Islands (SPIs) plus multi-locus sequence typing (MLST), and single-nucleotide polymorphisms (SNPs) analyses was conducted using WGS data. All strains harbored resistance genes fosA7, aac(6')-Iaa, sul2, tet(A), blaCMY-2, mdsA, and mdsB, and point mutations in gyrA and parC. All strains showed a phenotypic multidrug-resistant profile, with resistant or intermediate resistant profiles against 14 antimicrobials tested. Plasmids ColpVC, IncC, IncX1, and IncI1-I(Alpha) were detected. Virulence genes related to adherence, macrophage induction, magnesium uptake, regulation, and type III secretion systems plus 10 SPIs were detected. All strains were assigned to ST15 and belonged to two SNP clusters showing high similarity to isolates from the United Kingdom, Chile, Germany, the Netherlands, China, South Africa, and South Korea. In conclusion, the presence of multidrug-resistant S. Heidelberg strains in Brazil showing a global genomic relationship may alert for the necessity of stronger surveillance measures by food safety and public health authorities to limit its spread to humans and animals through foods.


Assuntos
Salmonella enterica , Humanos , Animais , Bovinos , Salmonella enterica/genética , Antibacterianos/farmacologia , Tipagem de Sequências Multilocus , Sorogrupo , Brasil/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Carne , Plasmídeos/genética , Genômica , Testes de Sensibilidade Microbiana
11.
Animals (Basel) ; 14(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38200752

RESUMO

Salmonella spp. are known to persist in the environment. Wild animals are believed to act as important reservoirs, with antimicrobial resistance frequently occurring in the environment. However, little is known about the role of the wildlife in Bahia as a reservoir for Salmonella in Brazil. This study aimed to isolate and characterize Salmonella spp. from wildlife in the Atlantic Forest and Caatinga biomes considering indicators such as the animal species, degree of anthropization, sampling area, and feeding habits. Convenience wildlife sampling and characterization were conducted, followed by microbiological and molecular identification of Salmonella isolates, serotyping, and antimicrobial susceptibility testing. A total of 674 fecal samples were collected from 12 municipalities during 2015-2021, and 4 were positive for the following Salmonella species: Salmonella enterica subspecies enterica serovar Agona (n = 1), Salmonella enterica subsp. enterica serogroup O:16 (n = 2), and Salmonella enterica subsp. enterica serovar Muenchen (n = 1). Antimicrobial susceptibility analysis revealed that one isolate was resistant to six antibiotics, including extended-spectrum penicillins and beta-lactamase inhibitors. These results indicated a low frequency of Salmonella spp. in the sampled forest fragments. The presence of Salmonella in wild animals increases the risk to public health and biodiversity and indicates that they can act as sentinels of environmental contamination or indicators of preservation.

12.
PLoS One ; 17(11): e0277979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36413564

RESUMO

Salmonella enterica subspecies enterica serovar Infantis (S. Infantis) is a non-typhoid, zoonotic and foodborne serovar with worldwide distribution, and often associated with increasing antimicrobial resistance. Efflux pumps are antimicrobial resistance mechanisms able to promote and increase resistance levels to multiple distinct drug classes. Heavy metal tolerance genes have been demonstrated to promote resistance against these compounds and act in the co-selection of antimicrobial resistant strains. Despite the relevance of S. Infantis in clinical and non-clinical fields, few studies worldwide have investigated the occurrence of such genes in strains from diverse sources. Therefore, the present study aimed at determining the prevalence of antimicrobial efflux pump and heavy metal tolerance genes and their genomic relatedness through core-genome multi-locus sequence typing (cgMLST) of 80 S. Infantis strains isolated from food, environmental, human and animal sources from 2013 to 2018 in Brazil. Twenty efflux pump encoding genes were detected, with 17 of these (acrA, acrB, baeR, crp, emrB, emrR, hns, kdpE, kpnF, marA, marR, mdtK, msbA, rsmA, sdiA, soxR and soxS) detected in all strains studied, golS in 98.75%, mdfA in 58.75% and tet(A) in 37.5%. Tolerance genes to arsenic (arsR) were detected in 100% of the strains, gold (golS and golT) in 98.75%, silver (silABCDEFPRS) in 36.25% and mercury (merR and merT) in 1.25%. cgMLST demonstrated a closer genetic relationship among strains harboring similar profiles of heavy metal and efflux pump encoding genes, despite their origin. In conclusion, the high prevalence of some efflux pump and heavy metal tolerance encoding genes alert us about the importance of strong surveillance measures to monitor resistance and the transmission of S. Infantis among diverse sources in Brazil.


Assuntos
Anti-Infecciosos , Metais Pesados , Salmonella enterica , Animais , Humanos , Sorogrupo , Farmacorresistência Bacteriana Múltipla/genética , Tipagem de Sequências Multilocus , Prevalência , Brasil/epidemiologia , Metais Pesados/toxicidade , Anti-Infecciosos/farmacologia
13.
Braz J Microbiol ; 53(4): 1799-1806, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35984599

RESUMO

Salmonella enterica serovar Choleraesuis (S. Choleraesuis) is a swine-adapted serovar associated to invasive infections in humans. In Brazil, data of strains of this serovar are scarce. In the present study, six S. Choleraesuis strains of animal (n = 5) and human (n = 1) origin from Brazil were screened for phenotypic antimicrobial resistance using disk-diffusion assay and using whole-genome sequencing data to search for antimicrobial resistance genes, plasmids, prophages, and Salmonella pathogenicity islands (SPIs). Its genetic relatedness was evaluated by MLST and SNP analysis. A single isolate from swine gallbladder harbored the colistin resistance gene mcr-1.1 into a IncX4 plasmid. In the six strains analyzed, resistance was found to tetracycline, nalidixic acid, ciprofloxacin, ampicillin, piperacillin, streptomycin, cefazoline, gentamycin, sulfamethoxazole-trimethoprim, and choloramphenicol, along with resistance genes aac(6')-Iaa, aac(3)-IV, aph(3'')-Ib, aph(6)-Id, aph(4)-Ia, aadA1, aph(3')-IIa, blaTEM-1A, floR, sul1, sul2, tet(B), drfA1, erm(B), mph(B), lnu(G), qacE, and gyrA point mutation Serine83 → Tyrosine and parC Threonine57 → Serine. Furthermore, IncF and IncH plasmids, ten SPIs, and seven prophage types were detected. All strains were assigned to ST145 and five belonged to a common SNP cluster of S. Choleraesuis strains from Brazil. The presence of S. Choleraesuis isolated from animals harboring relevant antimicrobial resistance profiles and virulence determinants reinforced the urge for enhanced surveillance to avoid its transmission to humans through food items.


Assuntos
Colistina , Salmonella enterica , Animais , Antibacterianos/farmacologia , Brasil , Farmacorresistência Bacteriana Múltipla/genética , Vesícula Biliar/microbiologia , Genômica , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos/genética , Salmonella enterica/genética , Sorogrupo , Suínos/microbiologia
14.
Sci Rep ; 12(1): 10555, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732677

RESUMO

Salmonella Dublin is a cattle-associated serovar sporadically causing disease in humans. S. Dublin strains isolated in Brazil and in other countries were analyzed to determine their phylogenetic relationships, the presence of genes, plasmids, genomic regions related to virulence and antimicrobial resistance genes repertoire, using WGS analyses. Illumina was used to sequence the genome of 112 S. Dublin strains isolated in Brazil from humans (n = 82) and animals (n = 30) between 1983 and 2016. Furthermore, 87 strains from other countries were analyzed. WGSNP analysis revealed three different clades, in which the strains from Brazil belonged to two clades, A and C. Most of the genes and genomic regions searched varied among the strains studied. The siderophore genes iroB and iroC were exclusively found in strains from Brazil and pegD gene, related to fimbrial adherence determinants, were positive in 124 strains from clades A and B but absent in all the strains from clade C (n = 71). Eleven plasmid replicons were found in the strains from Brazil, and nine were exclusively found in strains from other countries. The antimicrobial resistance genes mdsA and mdsB, that encode an efflux pump, were found in all the strains studied. The strains from Brazil carried other resistance genes, such as tet(A) (n = 11), tet(B) (n = 4) and tet(C) (n = 4), blaTEM-1 (n = 4), catA1 (n = 1), aadA1 (n = 1), and sul1 (n = 1). In conclusion, S. Dublin strains isolated in Brazil presented some few unique genes not found in strains from other countries and were allocated into two distinct clades with strains of human and animal origin epidemiologically related. This fact stresses the zoonotic potential of S. Dublin circulating in Brazil for more than 30 years.


Assuntos
Salmonella enterica , Animais , Antibacterianos/farmacologia , Brasil/epidemiologia , Bovinos , Filogenia , Plasmídeos/genética , Sorogrupo , Sequenciamento Completo do Genoma
15.
Int J Food Microbiol ; 372: 109695, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35509145

RESUMO

This study aimed to determine Salmonella enterica occurrence along the soybean meal production chain (raw material, in-processing samples, final products, and in the environment of five processing plants), characterize the isolates, and assess the survival of Salmonella Senftenberg 775W in soybeans stored under different temperature conditions. Among 713 samples analyzed, 12.9% (n = 92) were positive for Salmonella enterica. Dust collected inside and outside processing plants (n = 148) comprised the samples with the highest positivity for Salmonella enterica, 47.3%. The occurrence of Salmonella enterica varied among the different processing plants. Twenty-nine (n = 29) Salmonella serotypes were isolated, with S. Mbandaka as the most frequent serotype, whereas S. Typhimurium was mainly linked to final product samples (soybean meal). S. Senftenberg 775W did not survive for a long time in soybean stored at 20-37 °C, but at 20 °C, cells were viable for more than 60 days. This study suggests that soybean meal may harbor Salmonella serotypes related to foodborne disease outbreaks in humans and can be responsible for Salmonella introduction into livestock and, consequently, in foods of animal origin. This study provides crucial data on contamination pathways of Salmonella in the soybean production chain, contributing to the understanding of Salmonella epidemiology which is strategic for the development of preventive and control measures to reduce the burden of salmonellosis linked to products of animal origin.


Assuntos
Intoxicação Alimentar por Salmonella , Infecções por Salmonella , Salmonella enterica , Animais , Gado , Glycine max
16.
Microorganisms ; 10(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35456858

RESUMO

The increasing prevalence of multi-drug resistant (MDR) Escherichia coli in distinct ecological niches, comprising water sources and food-producing animals, such as fish species, has been widely reported. In the present study, quinolone-resistant E. coli isolates from Arapirama gigas, a major fish species in the Brazilian Amazon rivers and fish farms, were characterized regarding their antimicrobial susceptibility, virulence, and genetic diversity. A total of forty (40) specimens of A. gigas, including 20 farmed and 20 wild fish, were included. Thirty-four quinolone-resistant E. coli isolates were phenotypically tested by broth microdilution, while resistance and virulence genes were detected by PCR. Molecular epidemiology and genetic relatedness were analyzed by MLST and PFGE typing. The majority of isolates were classified as MDR and detected harboring blaCTX-M, qnrA and qnrB genes. Enterotoxigenic E. coli pathotype (ETEC) isolates were presented in low prevalence among farmed animals. MLST and PFGE genotyping revealed a wide genetic background, including the detection of internationally spread clones. The obtained data point out A. gigas as a reservoir in Brazilian Amazon aquatic ecosystems and warns of the interference of AMR strains in wildlife and environmental matrices.

17.
Antibiotics (Basel) ; 11(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326852

RESUMO

Salmonella spp. continues to figure prominently in world epidemiological registries as one of the leading causes of bacterial foodborne disease. We characterised 43 Brazilian lineages of Salmonella Typhimurium (ST) strains, characterized drug resistance patterns, tested copper (II) complex as control options, and proposed effective antimicrobial measures. The minimum inhibitory concentration was evaluated for seven antimicrobials, isolated and combined with the copper (II) complex [Cu(4-FH)(phen)(ClO4)2] (4-FH = 4-fluorophenoxyacetic acid hydrazide and phen = 1,10-phenanthroline), known as DRI-12, in planktonic and sessile ST. In parallel, 42 resistance genes were screened (PCR/microarray). All strains were multidrug resistant (MDR). Resistance to carbapenems and polymyxins (86 and 88%, respectively) have drawn attention to the emergence of the problem in Brazil, and resistance is observed also to CIP and CFT (42 and 67%, respectively), the drugs of choice in treatment. Resistance to beta-lactams was associated with the genes blaTEM/blaCTX-M in 39% of the strains. Lower concentrations of DRI-12 (62.7 mg/L, or 100 µM) controlled planktonic and sessile ST in relation to AMP/SUL/TET and AMP/SUL/TET/COL, respectively. The synergistic effect provided by DRI-12 was significant for COL/CFT and COL/AMP in planktonic and sessile ST, respectively, and represents promising alternatives for the control of MDR ST.

18.
J Appl Microbiol ; 132(4): 3327-3342, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34958707

RESUMO

AIMS: To characterize the genetic relatedness, phenotypic and genotypic antimicrobial resistance and plasmid content of 80 Salmonella Infantis strains isolated from food, humans and veterinary sources from 2013 to 2018 in Brazil. METHODS AND RESULTS: Pulsed-field gel electrophoresis and single-nucleotide polymorphism analysis showed major clusters containing 50% and 38.8% of the strains studied respectively. Multilocus sequence typing assigned all strains to ST32. Disk-diffusion revealed that 90% of the strains presented resistant or intermediate resistant profiles and 38.8% displayed multidrug resistance. Resistance genes for aminoglycosides (aac(6')-Iaa; aadA12; aph(3″-Ib; aph(6)-Id), ß-lactams (blaTEM-1 ; blaCTX-M-8 ; blaCMY-2 ), trimethoprim (dfrA8), tetracycline (tet(A)), amphenicols (floR), sulfonamide (sul2), efflux pumps (mdsA; mdsB), chromosomal point mutations in gyrB, parC, acrB and pmrA were detected. Strains harboured IncI, IncF, IncX, IncQ, IncN and IncR plasmids. CONCLUSIONS: The presence of a prevalent S. Infantis subtype in Brazil and the high antimicrobial resistance rates reinforced the potential hazard of this serovar for the public health and food safety fields. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study characterizing a large set of S. Infantis from Brazil by whole-genome sequencing, which provided a better local and global comprehension about the distribution and characteristics of this serovar of importance in the food, human and veterinary fields.


Assuntos
Antibacterianos , Salmonella enterica , Antibacterianos/farmacologia , Brasil , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Genômica , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Salmonella , Sorogrupo
19.
PLoS One ; 16(11): e0259687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34767604

RESUMO

Listeria monocytogenes and Salmonella spp. are considered important foodborne pathogens that are commonly associated with foods of animal origin. The aim of this study was to perform molecular characterization of L. monocytogenes and Salmonella spp. isolated from biofilms of cattle and poultry slaughterhouses located in the Federal District and State of Goiás, Brazil. Fourteen L. monocytogenes isolates and one Salmonella sp. were detected in poultry slaughterhouses. No isolates were detected in cattle slaughterhouses. All L. monocytogenes isolates belonged to lineage II, and 11 different pulsotypes were detected. Pulsed-field gel electrophoresis analysis revealed the dissemination of two strains within one plant, in addition to the regional dissemination of one of them. The Salmonella isolate was identified via whole genome sequencing as Salmonella enterica serovar Minnesota ST548. In the sequence analysis, no premature stop codons were detected in the inlA gene of Listeria. All isolates demonstrated the ability to adhere to Caco-2 cells, while 50% were capable of invading them. Antimicrobial resistance was detected in 57.1% of the L. monocytogenes isolates, and resistance to sulfonamide was the most common feature. The tetC, ermB, and tetM genes were detected, and four isolates were classified as multidrug-resistant. Salmonella sp. was resistant to nine antimicrobials and was classified as multidrug-resistant. Resistance genes qnrB19, blaCMY-2, aac(6')-Iaa, sul2, and tetA, and a mutation in the parC gene were detected. The majority (78.5%) of the L. monocytogenes isolates were capable of forming biofilms after incubation at 37°C for 24 h, and 64.3% were capable of forming biofilms after incubation at 12°C for 168 h. There was no statistical difference in the biofilm-forming capacity under the different evaluated conditions. Salmonella sp. was capable of forming biofilms at both tested temperatures. Biofilm characterization was confirmed by collecting the samples consistently, at the same sampling points, and by assessing biofilm formation in vitro. These results highlight the potential risk of cross-contamination in poultry slaughterhouses and the importance of surveillance and pathogen control maintenance programs within the meat production industry.


Assuntos
Matadouros , Biofilmes , Listeria monocytogenes/isolamento & purificação , Produtos da Carne/microbiologia , Salmonella/isolamento & purificação , Animais , Brasil , Bovinos , Aves Domésticas
20.
Microbiol Resour Announc ; 10(24): e0031321, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34137634

RESUMO

Salmonella enterica serovar Infantis is a broadly distributed serovar infecting humans and animal reservoirs globally. Here, we report 80 draft genome sequences of S. Infantis strains isolated from diverse sources in Brazil. These data will improve our understanding of the specific traits of S. Infantis isolated in this country.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA