Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(55): 117871-117880, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37875760

RESUMO

In this work, a new coating of boron-doped diamond ultra-nanocrystalline (U-NBDD), tailored to prevent massive formation of perchlorates during disinfection, is evaluated as electrode for the reclaiming of treated secondary wastewater by the electrochemically assisted disinfection process. Results obtained are compared to those obtained by using a standard electrode (STD) that was evaluated as a standard in previous research showing outstanding performance for this application. First tests were carried out to evaluate the chlorine speciation obtained after the electrolysis of synthetic chloride solutions at two different ranges of current densities. Concentrations of hypochlorite obtained using the U-NBDD anode at 25 mA cm-2 were 1.5-fold higher, outperforming STD anode; however, at 300 mA cm-2, an overturn on the behavior of anodes occurs where the amount of hypochlorite produced on STD anode was 1.5-fold higher. Importantly, at low current density the formation of chlorates and perchlorates is null using U-NBDD. Then, the disinfection of the real effluent of the secondary clarifier of a municipal wastewater treatment facility is assessed, where inactivation of Escherichia coli is achieved at low charge applied per volume electrolyzed (0.08 A h L-1) at 25 mA cm-2 using the U-NBDD. These findings demonstrate the appropriateness of the strategy followed in this work to obtain safer electro-disinfection technologies for the reclaiming of treated wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Diamante/química , Desinfecção/métodos , Ácido Hipocloroso , Percloratos , Eletrólise/métodos , Eletrodos , Oxirredução , Poluentes Químicos da Água/química
2.
Ind Eng Chem Res ; 61(30): 10660-10669, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35941851

RESUMO

This work examines the role of oxygen supply in the improvement of the hydrogen peroxide (H2O2) electrochemical production efficiency and the generation of high H2O2 concentrations in electrochemical processes operated in a discontinuous mode. To conduct this study, a highly efficient Printex L6 carbon-based gas diffusion electrode (GDE) as a cathode was employed for the electrogeneration of H2O2 in a flow-by reactor and evaluated the effects of lowering the operation temperature (to increase solubility) and increasing the air supply in the system on H2O2 electrogeneration. The results obtained in this study show that unlike what is expected in flow-through reactors, the efficiency in the H2O2 production is not affected by the solubility of oxygen when GDE is employed in the electrochemical process (using the flow-by reactor); i.e., the efficiency of H2O2 production is not significantly dependent on O2 solubility, temperature, and pressure. The application of the proposed PL6C-based GDE led to the generation of accumulated H2O2 of over 3 g L-1 at a high current density. It should be noted, however, that the application of the electrocatalyst at lower current densities resulted in higher energy efficiency in terms of H2O2 production. Precisely, a specific production of H2O2 as high as 131 g kWh-1 was obtained at 25 mA cm-2; the energy efficiency (in terms of H2O2 production) values obtained in this study based on the application of the proposed GDE in a flow-by reactor at low current densities were found to be within the range of values recorded for H2O2 production techniques that employ flow-through reactors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA