Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38894396

RESUMO

The growing use of Unmanned Aerial Vehicles (UAVs) raises the need to improve their autonomous navigation capabilities. Visual odometry allows for dispensing positioning systems, such as GPS, especially on indoor flights. This paper reports an effort toward UAV autonomous navigation by proposing a translational velocity observer based on inertial and visual measurements for a quadrotor. The proposed observer complementarily fuses available measurements from different domains and is synthesized following the Immersion and Invariance observer design technique. A formal Lyapunov-based observer error convergence to zero is provided. The proposed observer algorithm is evaluated using numerical simulations in the Parrot Mambo Minidrone App from Simulink-Matlab.

2.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298395

RESUMO

Unmanned aerial vehicle (UAV) autonomous navigation requires access to translational and rotational positions and velocities. Since there is no single sensor to measure all UAV states, it is necessary to fuse information from multiple sensors. This paper proposes a deterministic estimator to reconstruct the scale factor of the position determined by a simultaneous localization and mapping (SLAM) algorithm onboard a quadrotor UAV. The position scale factor is unknown when the SLAM algorithm relies on the information from a monocular camera. Only onboard sensor measurements can feed the estimator; thus, a deterministic observer is designed to rebuild the quadrotor translational velocity. The estimator and the observer are designed following the immersion and invariance method and use inertial and visual measurements. Lyapunov's arguments prove the asymptotic convergence of observer and estimator errors to zero. The proposed estimator's and observer's performance is validated through numerical simulations using a physics-based simulator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA