Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 274(Pt 2): 133359, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914393

RESUMO

Heterogeneous biocatalysts were prepared by adsorbing T. lanuginosus lipase (TLL) onto uncalcined (SBAUC-TLL) and calcined (SBAC-TLL) SBA-15, using ammonium fluoride as a pore expander to facilitate TLL immobilization. At an enzyme load of 1 mg/g, high immobilization yields (>90 %) and recovered activities (>80 % for SBAUC-TLL and 70 % for SBAC-TLL) were achieved. When increasing the enzyme load to 5 mg/g, the immobilization yield of SBAUC-TLL was 80 %, and the recovered activity was 50 %, while SBAC-TLL had a yield of 100 % and a recovered activity of 36 %. Crosslinking with glutaraldehyde (GA) was conducted to improve stability (SBAUC-TLL-GA and SBAC-TLL-GA). Although SBAC-TLL-GA lost 25 % of initial activity after GA modifications, it exhibited the highest thermal (t1/2 = 5.7 h at 65 °C), when compared to SBAC-TLL (t1/2 = 12 min) and the soluble enzyme (t1/2 = 36 min), and operational stability (retained 100 % activity after 5 cycles). Both biocatalysts presented high storage stability since they retained 100 % of initial activity for 30 days. These results highlight SBA-15's potential as an enzyme support and the protocol's efficacy in enhancing stability, with implications for industrial applications in the food, chemical, and pharmaceutical sectors.


Assuntos
Biocatálise , Estabilidade Enzimática , Enzimas Imobilizadas , Lipase , Dióxido de Silício , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Lipase/química , Lipase/metabolismo , Dióxido de Silício/química , Porosidade , Temperatura , Adsorção , Concentração de Íons de Hidrogênio , Eurotiales/enzimologia , Cinética , Glutaral/química
2.
Dalton Trans ; 53(21): 9139-9150, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38741567

RESUMO

In this study, metal-doped niobates and perovskites were obtained by a solid-state reaction. The solids were evaluated in the esterification of glycerol in the presence of acetic acid to produce valuable esters of glycerol. The structural features of the solids indicated the ZnNb2O6, Pb2.8Nb2O7.8 and CuNb2O6 columbite main phases and La2MnFeO6 double-perovskite. Density functional theory (DFT) studies of Pb2.8Nb2O7.8 clearly confirmed the existence of a robust orthorhombic structure and its electronic properties were correlated with the Nb and Pb interactions. The morphological and elemental analyses also indicated that not all surface elements, as well as morphology, were crucial for catalytic properties. All solids were active and selective toward triacetin formation upon glycerol esterification with acetic acid. The catalytic performance depends mainly on the availability of the surface and its structural stability, as well as defects formation. Recyclability studies indicated that the La2MnFeO6 double-perovskite was an efficient catalyst, achieving glycerol conversion of 68% and triacetin selectivity of 25% up to 4 cycles of use in the reaction. The structural defects near the Mn4+/Mn3+ surface sites resulted in the diffusion of anions and an increased concentration of oxygen vacancies contributed to the stable performance of the solid in glycerol ester production.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124416, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733915

RESUMO

The effects on the structure, valence state and morphological properties of FeCo-containing SnO2 nanostructured solids were investigated. The physicochemical features were tuned by distinct synthesis routes e.g., sol-gel, coprecipitation and nanocasting, to apply them as catalysts in the glycerol valorization to cyclic acetals. Based on Mössbauer and XPS spectroscopy results, all nanosized FeCoSn solids have Fe-based phases, which contain Co and Sn included in the structure, and well-dispersed Fe3+ and Fe2+ surface active sites. Raman, FTIR and EPR spectroscopies measurements of the spent solids demonstrated structural stability for the sol-gel based solid, which is indeed responsible for the highest catalytic performance, among the nanocasted and coprecipitated counterparts. Morphological and elemental analyses illustrated distinct morphologies and composition on solid surface, depending on the synthesis route. The Fe/Co and Fe/Sn surface ratios are closely related to the catalytic performance. The improved glycerol conversion and selectivities of the solid obtained by sol-gel method was ascribed to the leaching resistance and the Sn action as a structural promoter.

4.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257374

RESUMO

This research pioneers the application of microwave irradiation as an innovative strategy for one-pot synthesis and surfactant elimination (cetyltrimethylammonium bromide-CTAB) from MCM-41, introducing a rapid and efficient methodology. MCM-41 silica is widely utilized in various applications due to its unique textural and structural properties. Nonetheless, the presence of residual surfactants after synthesis poses a challenge to its effective application. MCM-41 synthesis, conducted in a microwave reactor at 60 °C, provided a result within 0.5 to 1 h. Comprehensive analyses of structural, chemical, morphological, and surface characteristics were undertaken, with a focus on the impact of synthesis time on these properties. Surfactant extraction involved the use of ethanol as a solvent at 120 °C for 6 min within the microwave reactor. The acquired particles, coupled with the properties of textural and structural features, affirmed the efficacy of the synthesis process, resulting in the synthesis of MCM-41 within 36 min. This study presents the first instance of one-pot synthesis and surfactant removal from MCM-41 using a microwave reactor. The proposed method not only addresses the surfactant removal challenge, but also substantially accelerates the synthesis process, thereby enhancing the potential for MCM-41's application in diverse fields.

5.
Environ Sci Pollut Res Int ; 31(41): 53671-53690, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38158527

RESUMO

The removal of dyes from effluents of textile industries represents a technological challenge, due to their significant environmental impact. The application of halloysite (Hal) and palygorskite (Pal) clay minerals as adsorbents for the removal of Congo red (CR) and methylene blue (MB) was evaluated in this work. The materials were applied both in natural and acid-treated forms, and characterized by XRD, XPS, SEM-EDS, FTIR, and N2 adsorption-desorption isotherm techniques to identify their properties and main active sites. The adsorbents showed potential to remove CR (> 98%) and MB (> 85%) within 180 min, using 0.3 g adsorbent and initial dye concentration of 250 mg L-1. Semi-empirical quantum mechanical calculations (SQM) confirmed the interaction mechanism between dyes and the adsorbents via chemisorption (- 69.0 kcal mol-1 < Eads < - 28.8 kcal mol-1), which was further observed experimentally due to the high fit of adsorption data to pseudo-second order kinetic model (R2 > 0.99) and Langmuir isotherm (R2 > 0.98). The use of Pal and Hal to remove dyes was proven to be economically and environmentally viable for industrial application.


Assuntos
Argila , Corantes , Compostos de Silício , Poluentes Químicos da Água , Adsorção , Argila/química , Corantes/química , Poluentes Químicos da Água/química , Compostos de Silício/química , Minerais/química , Azul de Metileno/química , Silicatos de Alumínio/química , Compostos de Magnésio/química , Cinética , Vermelho Congo/química
6.
Gels ; 9(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998999

RESUMO

This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 µm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir's model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L-1, 86 ± 6 mg L-1, and 127 ± 4 mg L-1, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals.

7.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762341

RESUMO

The global demand for energy and industrial growth has generated an exponential use of fossil fuels in recent years. It is well known that carbon dioxide (CO2) is mainly produced, but not only from fuels, which has a negative impact on the environment, such as the increasing emission of greenhouse gases. Thus, thinking about reducing this problem, this study analyzes microwave irradiation as an alternative to conventional heating to optimize zeolite A synthesis conditions for CO2 capture. Synthesis reaction parameters such as different temperatures (60-150 °C) and different time durations (1-6 h) were evaluated. The CO2 adsorption capacity was evaluated by CO2 adsorption-desorption isotherms at 25 °C and atmospheric pressure. The results showed that the synthesis of zeolite A by microwave irradiation was successfully obtained from natural kaolinite (via metakaolinization), reducing both temperature and time. Adsorption isotherms show that the most promising adsorbent for CO2 capture is a zeolite synthesized at 100 °C for 4 h, which reached an adsorption capacity of 2.2 mmol/g.


Assuntos
Dióxido de Carbono , Zeolitas , Adsorção , Micro-Ondas , Pressão Atmosférica
8.
Heliyon ; 9(6): e17097, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484270

RESUMO

The demand for sustainable and low-cost materials for wastewater treatment is increasing considerably. In this scenario, geopolymers have gained great interest, due to their good mechanical properties, their ability to be produced from industrial waste and their adsorbent or catalytic properties. In this study, novel magnetic mining waste based-geopolymers were produced by incorporating a residue from phosphate waste rocks, which were extensively characterized (XRD, TGA/DTA, SEM, BET, XRF, FTIR, Mössbauer, ss-NMR and XPS). The materials produced showed formation of a dense framework, even with 75% incorporation of the residue. The iron oxides and their magnetic properties remained unchanged, and their application in advanced oxidation reactions were evaluated, in particular, as catalysts in ozonation reactions. All of the geopolymers presented catalytic activity in the ozonation reaction, with catalytic ozone decomposition values of up to 2.98 min-1, which is 99 times greater than non-catalyzed reactions. Moreover, the reuse (performed in three cycles) and hot filtration-like experiments demonstrated, respectively, the regenerability and heterogeneous catalytic properties of the produced materials, showcasing the potential of these waste materials for catalytic geopolymer production. demonstrating the potential of this waste to produce catalytic geopolymers.

9.
J Org Chem ; 87(20): 13427-13438, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36075104

RESUMO

Three new single-crystal structures were isolated for picolinic acid (2), the trifluoroacetate salt of picolinic acid (1), and pyridoxal hydrochloride (3). These compounds displayed unconventional crystallographic features that must be considered when structural refinements are carried out. Thus, the generated Fourier differences map obtained with the diffraction data collected at 100 K was crucial to visualize electron densities, which were balanced by either one hydrogen atom or a hydrogen atom with an occupancy factor of 1/2 located between either two carboxylate moieties, two phenolic oxygen atoms, or two pyridinic nitrogen atoms. Moreover, NMR studies were conducted to analyze the bulk chemical composition of single crystals of 2-pyridinecarboxylic acid obtained from the gem-diol/hemiacetal forms and the polymerization products after the treatment of 2-pyridinecarboxaldehyde with TFA:H2O (1) or a diluted Cu(NO3)2 solution (2). The quantitative yield of the pyridoxal hydrochloride crystalline material (3) obtained from a diluted CuCl2 solution was exhaustively characterized by solid-state NMR methods. These methods allowed the resolution of the signals corresponding to the protons of the hydroxyl moiety of the intramolecular hemiacetal group and the phenolic hydrogen. Theoretical calculations using DFT methods were done to complement the atomic location of the hydrogen atoms obtained from the X-ray analysis.


Assuntos
Hidrogênio , Piridoxal , Cristalografia por Raios X , Piridoxal/química , Ligação de Hidrogênio , Estrutura Molecular , Prótons , Ácido Trifluoracético , Oxigênio , Nitrogênio
10.
Chempluschem ; 87(7): e202200169, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35789218

RESUMO

This work describes the synthesis of 4-(4-AcPy) and 3-acetylpyridine (3-AcPy) copper soluble complexes for the activation of hydrogen peroxide and the concomitant generation of reactive oxygen species (ROS). Given the paramagnetic effects of copper ions in the Nuclear Magnetic Resonance (NMR) lines, we aimed at demonstrating that the combination of high-resolution 2D solid-state NMR experiments, Electron Paramagnetic Resonance (EPR), single-crystal X-ray crystallography and Density Functional Theory (DFT) calculations allows a detailed study of the chemical structure of the ligands and the surrounding metal ions. The copper complexes synthesized with CuCl2 were useful for the activation of H2 O2 during which the only ROS was the hydroxyl one, as demonstrated by EPR experiments. A removal of methyl orange (MO) azo-dye higher than 85 % was achieved in 200 minutes, combining 1.7 mM of copper complexes with 60 mM of H2 O2 and 40 µM of MO.


Assuntos
Cobre , Cobre/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Espécies Reativas de Oxigênio
11.
Front Chem ; 10: 903053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720988

RESUMO

Growing concern about climate change has been driving the search for solutions to mitigate greenhouse gas emissions. In this context, carbon capture and utilization (CCU) technologies have been proposed and developed as a way of giving CO2 a sustainable and economically viable destination. An interesting approach is the conversion of CO2 into valuable chemicals, such as methanol (MeOH) and dimethyl ether (DME), by means of catalytic hydrogenation on Cu-, Zn-, and Al-based catalysts. In this work, three catalysts were tested for the synthesis of MeOH and DME from CO2 using a single fixed-bed reactor. The first one was a commercial CuO/γ-Al2O3; the second one was CuO-ZnO/γ-Al2O3, obtained via incipient wetness impregnation of the first catalyst with an aqueous solution of zinc acetate; and the third one was a CZA catalyst obtained by the coprecipitation method. The samples were characterized by XRD, XRF, and N2 adsorption isotherms. The hydrogenation of CO2 was performed at 25 bar, 230°C, with a H2:CO2 ratio of 3 and space velocity of 1,200 ml (g cat · h)-1 in order to assess the potential of these catalysts in the conversion of CO2 to methanol and dimethyl ether. The catalyst activity was correlated to the adsorption isotherms of each reactant. The main results show that the highest CO2 conversion and the best yield of methanol are obtained with the CZACP catalyst, very likely due to its higher adsorption capacity of H2. In addition, although the presence of zinc oxide reduces the textural properties of the porous catalyst, CZAWI showed higher CO2 conversion than commercial catalyst CuO/γ-Al2O3.

13.
Dalton Trans ; 51(8): 3213-3224, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35119061

RESUMO

In this study, the impact of rehydration on the catalytic properties of Mg/Al layered double hydroxides (LDH) for glycerol oligomerization was assesed. Although previous works have employed other LDH derived materials in this reaction, little information on recyclability is published. After observing the initial results on how basicity and surface area were related to the catalytic activty, an LDH modification strategy was developed with the addition of acetic acid. Changes on the basic site distribution were noticed and consequently, selectivity to diglycerol was improved. The best catalytic performance (reaction with 4 wt% cat., at 240 °C for 8 hours) led to 64% of glycerol conversion (XGly) and 37% of diglycerol selectivity (Sdi). Aditionally, reciclying of modified LDH was better than the non acid treated material, presenting higher yield of diglycerol. Catalyst deactivation was related to the harsh reaction conditions and to the blockage of active species by impurities. Loss of metallic species by leaching to the reaction products was not oberseved, an advantage in comparison with previous works.

14.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502072

RESUMO

Typical porous silica (SBA-15) has been modified with pore expander agent (1,3,5-trimethylbenzene) and fluoride-species to diminish the length of the channels to obtain materials with different textural properties, varying the Si/Zr molar ratio between 20 and 5. These porous materials were characterized by X-ray Diffraction (XRD), N2 adsorption/desorption isotherms at -196 °C and X-ray Photoelectron Spectroscopy (XPS), obtaining adsorbent with a surface area between 420-337 m2 g-1 and an average pore diameter with a maximum between 20-25 nm. These materials were studied in the adsorption of human blood serum proteins (human serum albumin-HSA and immunoglobulin G-IgG). Generally, the incorporation of small proportions was favorable for proteins adsorption. The adsorption data revealed that the maximum adsorption capacity was reached close to the pI. The batch purification experiments in binary human serum solutions showed that Si sample has considerable adsorption for IgG while HSA adsorption is relatively low, so it is possible its separation.


Assuntos
Albumina Sérica/química , Soroglobulinas/química , Dióxido de Silício/química , Adsorção , Humanos , Porosidade
15.
J Sep Sci ; 44(17): 3248-3253, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34080289

RESUMO

The separation of ethane-ethylene mixtures was evaluated using two zeolitic imidazolate frameworks, which are only different from the assemble metal, as stationary phase from inverse gas chromatography data. The chromatographic profiles exhibited peaks adequately resolved. Separation is attributed to the pore sizes of the adsorbents that discern between ethane and ethylene molecule shapes and closed kinetic diameters. The adsorption heats were estimated for each probe molecule from the slopes of the straight lines at four temperatures. The evaluated materials are iso-structural compounds with the unique difference of assembling metal (cobalt and zinc). Cobalt material showed atypical adsorption of ethane over ethylene, which was observed taking into account the retarded elution of the paraffin. Therefore, the anomalous behavior could be ascribed to the presence of cobalt(II). Structural characterization of both materials was performed by X-ray powder diffraction, X-ray photoelectronic spectroscopy, and thermogravimetry, while morphological characterization was performed by scanning electron microscopy. H2 -CO2 and CH4 -CO2 mixtures separation were also evaluated by inverse gas chromatography. Both materials were able to separate these two mixtures. CO2 was the highest retained probe molecule due to the presence of quadrupole moment.

17.
Materials (Basel) ; 14(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923161

RESUMO

Effects of the incorporation of Cr, Ni, Co, Ag, Al, Ni and Pt cations in titanate nanotubes (NTs) were examined on the NOx conversion. The structural and morphological characterizations evidenced that the ion-exchange reaction of Cr, Co, Ni and Al ions with the NTs produced catalysts with metals included in the interlayer regions of the trititanate NTs whereas an assembly of Ag and Pt nanoparticles were either on the nanotubes surface or inner diameters through an impregnation process. Understanding the role of the different metal cations intercalated or supported on the nanotubes, the optimal selective catalytic reduction of NOx by CO reaction (SCR) conditions was investigated by carrying out variations in the reaction temperature, SO2 and H2O poisoning and long-term stability runs. Pt nanoparticles on the NTs exhibited superior activity compared to the Cr, Co and Al intercalated in the nanotubes and even to the Ag and Ni counterparts. Resistance against SO2 poisoning was low on NiNT due to the trititanate phase transformation into TiO2 and also to sulfur deposits on Ni sites. However, the interaction between Pt2+ from PtOx and Ti4+ in the NTs favored the adsorption of both NOx and CO enhancing the catalytic performance.

18.
Mater Sci Eng C Mater Biol Appl ; 120: 111781, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545909

RESUMO

This study is focused on the development of a nanodevice for loading and release of 5-Fluorouracil (5-FU) with a view to improving its therapeutic efficiency, using as strategy the fabrication of a nanoconjugate through drug anchorage on the surface of carbon quantum dots (CQD). Several physicochemical and analytical techniques were employed to obtain information about materials morphology, structure, and optical properties. The results indicated that the interactions between both entities resulted in good physicochemical properties and photostability. Acid pH favored drug release, indicating a tendency to release 5-FU from 5-FU-CQD into the tumor microenvironment. The cytotoxicity of CQD and 5-FU-CQD nanoconjugate was evaluated against normal human lung fibroblast (GM07492A) and human breast cancer (MCF-7) cell lines. The CQD was non-toxic, indicating that these materials are biocompatible and can be used as a nanocarrier for 5-FU in biological systems. For the 5-FU-CQD nanoconjugate, it was observed a reduction in toxicity for normal cells compared to free 5-FU, suggesting that drug anchoring in CQD reduced drug-associated toxicity, while for cancer cells exhibited an antitumor effect equivalent to that of the free drug, opening perspectives for the application of this material in anticancer therapy.


Assuntos
Fluoruracila , Pontos Quânticos , Carbono , Portadores de Fármacos , Liberação Controlada de Fármacos , Fluoruracila/farmacologia , Humanos , Nanoconjugados
19.
Front Chem ; 8: 591766, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33313041

RESUMO

A wide variety of solid sorbents has recently been synthesized for application in CO2 adsorption. Among them, mesoporous silicas deserve attention because of their ability to accommodate large concentrations of different chemicals as a consequence of their surface chemistry and tunable pore structure. Functionalized materials exhibit promising features for CO2 adsorption at high temperatures and low CO2 concentrations. This work aimed to assess the influence of the textural properties on the performance of CO2 adsorption on functionalized mesoporous silica. With this goal, several mesoporous silica foams were synthesized by varying the aging temperature, obtaining materials with larger pore diameter. Thus, the synthesized materials were functionalized by grafting or impregnation with 3-aminopropyltriethoxysilane, polyethylenimine, and tetraethylenepentamine as amine sources. Finally, the amino functionalized materials were assessed for CO2 capture by means of equilibrium adsorption isotherms at 25, 45, and 65°C. Among the most outstanding results, high aging temperatures favor the performance of impregnated materials by exposing greater pore diameters. Low or intermediate temperatures favor grafting by preserving an appropriate density of silanol groups.

20.
Materials (Basel) ; 13(5)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131394

RESUMO

The presence of synthetic dyes in water causes serious environmental issues owing to the low water quality, toxicity to environment and human carcinogenic effects. Adsorption has emerged as simple and environmental benign processes for wastewater treatment. This work reports the use of porous Fe-based composites as adsorbents for Acid Red 66 dye removal in an aqueous solution. The porous FeC and Fe/FeC solids were prepared by hydrothermal methods using iron sulfates and sucrose as precursors. The physicochemical properties of the solids were evaluated through X-ray diffraction (XRD), Scanning electron microscopy coupled with Energy dispersive spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared s (FTIR), Raman and Mössbauer spectroscopies, nitrogen adsorption-desorption isotherms, Electron Paramagnetic Resonance (EPR) and magnetic saturation techniques. Results indicated that the Fe species holds magnetic properties and formed well dispersed Fe3O4 nanoparticles on a carbon layer in FeC nanocomposite. Adding iron to the previous solid resulted in the formation of γ-Fe2O3 coating on the FeC type structure as in Fe/FeC composite. The highest dye adsorption capacity was 15.5 mg·g-1 for FeC nanocomposite at 25 °C with the isotherms fitting well with the Langmuir model. The removal efficiency of 98.4% was obtained with a pristine Fe sample under similar experimental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA