Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(2): e0229435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32107491

RESUMO

A collection of evidence suggests that conjugation of double bonds of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, omega-3 polyunsaturated fatty acids (n-3 PUFAs), increases their anticarcinogenic activity; however, the effect of such conjugation on vascular tone activity remains unknown. We propose that the mixture of conjugated PUFAs exerts higher vasorelaxation activity than the corresponding mixture of nonconjugated PUFAs. The vascular response to different concentrations of conjugated and nonconjugated isomers of EPA and DHA, among other fatty acids (FAs) naturally present in shark oil, and the role of nitric oxide (NO) as a vasorelaxant agent were investigated. Both conjugated EPA (CEPA) and conjugated DHA (CDHA) were prepared by alkaline isomerization of all PUFAs contained in shark oil. Different concentrations of conjugated and nonconjugated PUFAs were placed in contact with precontracted aortic rings of Wistar rats to assess their effect on vascular tone. All tested samples exerted a vasorelaxant effect. Compared to nonconjugated PUFAs, conjugated isomers exhibited an increase in the dilatation of the aortic rings (P<0.001) in a dose-dependent manner (P<0.001). In addition, nonconjugated PUFAs produced nitric oxide (NO) in a dose-dependent manner, while conjugated PUFAs did not, suggesting that their dilatation mechanism is not totally dependent on NO.


Assuntos
Aorta Torácica/fisiologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Óleos de Peixe/farmacologia , Óxido Nítrico/metabolismo , Vasodilatação/fisiologia , Animais , Aorta Torácica/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/química , Ácido Eicosapentaenoico/química , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Ácidos Graxos/metabolismo , Óleos de Peixe/química , Isomerismo , Masculino , Ratos , Ratos Wistar , Tubarões , Vasodilatação/efeitos dos fármacos
2.
Biotechnol Prog ; 35(6): e2891, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31374159

RESUMO

pH variations influence the delivery of essential nutrients and CO2 solubility, which impact algae metabolism. In this study the microalgal growth and chlorophyll, lipid, and fatty acids content; along with the expression of some genes implicated in the biosynthesis of lipids were examined in Chlamydomonas reinhardtii subjected to pH values of 7.0, 7.8, and 8.5. At pH 7.8 an increase in cell growth was observed with a significant accumulation of chlorophyll (1.75-fold) when compared with growth at pH 7, while at pH 8.5 a sharp decrease in both parameters was observed when compared with the other pH values tested. Lipid content increased 3.0 (14.81% of dry cell weight, dcw) and 2.3 times (11.43% dcw) at pH 7.8 and 8.5, respectively, when compared with the experiment at pH 7 (4.97% dcw). The compositions of major fatty acids in the strains growing at pH 7.0, 7.8, or 8.5 were 25.7, 28.0, and 32.1% for palmitic acid; 17.3, 14.7, and 25.7% for oleic acid; and 9.8, 12.1, and 4.6% for linoleic acid; respectively. qRT-PCR analysis showed that the transcripts of ß-carboxyltransferase, Acyl carrier protein 1, acyl-ACP thiolase 1, acyl-sn-glycerol-3-phosphate acyltransferase, and diacylglycerol acyl transferase isoform 3 were significantly induced at pH 7.8 when compared with the other two pH conditions. These results indicate that the induction of genes implicated in the early and final steps of lipid biosynthesis contributes to their accumulation in the stationary phase. Our research suggests that a pH of 7.8 might be ideal to maximize growth and lipid accumulation.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Trifosfato de Adenosina/biossíntese , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Clorofila/análise , Ácidos Graxos/análise , Concentração de Íons de Hidrogênio
3.
J Biotechnol ; 184: 27-38, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-24844864

RESUMO

The high demand for less polluting, newer, and cheaper fuel resources has increased the search of the most innovative options for the production of the so-called biofuels. Chlamydomonas reinhardtii is a photosynthetic unicellular algae with multiple biotechnological advantages such as easy handling in the laboratory, a simple scale-up to industrial levels, as well as a feasible genetic modification at nuclear and chloroplast levels. Besides, its fatty acids can be used to produce biofuels. Previous studies in plants have found that the over expression of DOF-type transcription factor genes increases the synthesis and the accumulation of total lipids in seeds. In this context, the over-expression of a DOF-type transcription factor in C. reinhardtii was applied as approach to increase the amount of lipids. The results indicate higher amounts (around 2-fold) of total lipids, which are mainly fatty acids, in the genetically C. reinhardtii modified strains when compared with the non-genetically modified strain. In order to elucidate the possible function of the introduced Dof-type transcription factor, we performed a transcription profile of 8 genes involved in fatty acid biosynthesis and 6 genes involved in glycerolipid biosynthesis, by quantitative real time (qRT-PCR). Differential expression profile was observed, which can explain the increase in lipid accumulation. However, these strains did not show notable changes in the fatty acid profile. This work represents an early effort in generating a strategy to increase fatty acids production in C. reinhardtii and their use in biofuel synthesis.


Assuntos
Biocombustíveis , Cloroplastos/metabolismo , Metabolismo dos Lipídeos , Lipídeos/biossíntese , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Lipídeos/genética , Fotossíntese/genética , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA