Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 194: 110730, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33444611

RESUMO

Antibiotic resistance poses a major global health threat. Understanding emergence and dissemination of antibiotic resistance in environmental media is critical to the design of control strategies. Because antibiotic resistance genes (ARGs) may be aerosolized from contaminated point sources and disseminated more widely in localized environments, we assessed ARGs in aerosols in urban La Paz, Bolivia, where wastewater flows in engineered surface water channels through the densely populated urban core. We quantified key ARGs and a mobile integron (MI) via ddPCR and E. coli spp. as a fecal indicator by culture over two years during both the rainy and dry seasons in sites near wastewater flows. ARG targets represented major antibiotic groups-tetracyclines (tetA), fluoroquinolines (qnrB), and beta-lactams (blaTEM)-and an MI (intI1) represented the potential for mobility of genetic material. Most air samples (82%) had detectable targets above the experimentally determined LOD: most commonly blaTEM and intI1 (68% and 47% respectively) followed by tetA and qnrB (17% and 11% respectively). ARG and MI densities in positive air samples ranged from 1.3 × 101 to 6.6 × 104 gene copies/m3 air. Additionally, we detected culturable E. coli in the air (52% of samples <1 km from impacted surface waters) with an average density of 11 CFU/m3 in positive samples. We observed decreasing density of blaTEM with increasing distance up to 150 m from impacted surface waters. To our knowledge this is the first study conducting absolute quantification and a spatial analysis of ARGs and MIs in ambient urban air of a city with contaminated surface waters. Environments in close proximity to urban wastewater flows in this setting may experience locally elevated concentrations of ARGs, a possible concern for the emergence and dissemination of antimicrobial resistance in cities with poor sanitation.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Aerossóis , Antibacterianos/farmacologia , Bolívia , Cidades , Escherichia coli/genética , Genes Bacterianos , Águas Residuárias
2.
Sci Total Environ ; 738: 139495, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32425257

RESUMO

Evidence of exposure to enteric pathogens through the air and associated risk of infection is scarce in the literature outside of animal- or human-waste handling settings. Cities with poor sanitation are important locations to investigate this aerial exposure pathway as their rapid growth will pose unprecedented challenges in waste management. To address this issue, simple surveillance methods are needed. Therefore, the objectives of this study were to optimize a community exposure bioaerosol surveillance strategy for urban outdoor locations with poor sanitation, and to determine which bioaerosols could contribute to exposure. Passive and active bioaerosol sampling methods were used to characterize the fate and transport of sanitation-related bioaerosols during the rainy and dry seasons in La Paz, Bolivia. Median coliform bacteria fluxes were 71 CFU/(m2 × h) during the rainy season and 64 CFU/(m2 × h) during the dry season, with 38% of the dry season samples testing positive for E. coli. Wind speed, relative humidity and UVB irradiance were identified as significant covariates to consider in bioaerosol transport models in La Paz. Active sampling yielded one positive sample (10%) for human adenovirus (HadV) and one sample (10%) for influenza A virus during the rainy season. HadV was detected at the site with the highest bacterial flux. Four samples (8%) were positive for influenza A virus in the dry season. These findings suggest that aerosols can contribute to community exposure to potentially pathogenic microorganisms in cities with poor sanitation. The use of passive sampling, despite its limitations, can provide quantitative data on microorganisms' viability within realistic timeframes of personal exposure.


Assuntos
Saúde Única , Saneamento , Aerossóis , Microbiologia do Ar , Animais , Bolívia , Cidades , Estudos Transversais , Escherichia coli , Humanos
3.
Sci Total Environ ; 654: 1132-1145, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30841388

RESUMO

BACKGROUND: Systematically collected and comparable data on drinking water safety at city-scale is currently unavailable, despite the stated importance of water safety monitoring at scale under the United Nations Sustainable Development Goals (SDGs). We developed a rapid drinking water quality assessment methodology intended to be replicable across all cities and useful for monitoring towards achieving SDG 6 (Clean Water and Sanitation). METHODS: We collected drinking water samples at the point-of-consumption for basic microbial, physical and chemical water quality analysis and conducted household surveys on drinking water, sanitation, and hygiene access from 80 households in the city of Cochabamba over 1 week. We categorized the household's water service level according to the SDG 6 framework. RESULTS: We estimated an average time requirement of 6.4 person-hours and a consumable cost of US $51 per household (n = 80). In this cross-sectional study, 71% of drinking water samples met World Health Organization (WHO) microbiological safety criteria, 96% met WHO chemical quality criteria, and all met WHO aesthetic quality criteria. However, only 18% of the households were categorized as having safely managed drinking water services. None met the criteria for having safely managed sanitation services; nonetheless, 81% had basic sanitation services and 78% had basic hygiene facilities. CONCLUSIONS: This method can generate basic water safety data for a city at a relatively low cost in terms of person-time and materials, yielding useful information for inter-city analyses. Because 29% of samples did not meet microbiological safety criteria, 22% of the households did not have access to handwashing facilities and none had safe sanitation services, we concluded that Cochabamba did not meet normative SDG 6 targets when surveyed. Our study further suggests that water quality at point-of-use more accurately characterizes drinking water safety than infrastructure type.


Assuntos
Água Potável/microbiologia , Monitoramento Ambiental/métodos , Abastecimento de Água/estatística & dados numéricos , Bolívia , Cidades/estatística & dados numéricos , Desinfecção das Mãos , Humanos , Higiene , População Rural , Saneamento , Fatores Socioeconômicos , Qualidade da Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA