Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 213: 112359, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35144082

RESUMO

The development of blood-interacting surfaces is critical to fabricate biomaterials for medical use, such as prostheses, implants, biosensors, and membranes. For instance, thrombosis is one of the leading clinical problems when polymer-based materials interact with blood. To overcome this limitation is necessary to develop strategies that limit platelets adhesion and activation. In this work, hyaluronan (HA)/chitosan (Chi) based-films, recently reported in the literature as platforms for tumor cell capture, were developed and, subsequently, functionalized with sulfated chitosan (ChiS) using a layer-by-layer technique. ChiS, when compared to native Chi, presents the unique abilities to confer anti-thrombogenic properties, to reduce protein adsorption, and also to limit calcification. Film physicochemical characterization was carried out using FTIR and XPS for chemical composition assessment, AFM for the surface morphology, and contact angle for hydrophilicity evaluation. The deposition of ChiS monolayer promoted a decrease in both roughness and hydrophilicity of the HA/Chi films. In addition, the appearance of sulfur in the chemical composition of ChiS-functionalized films confirmed the film modification. Biological assay indicated that the incorporation of sulfated groups limited platelet adhesion, mainly because a significant reduction of platelets adhesion to ChiS-functionalized films was observed compared to HA/Chi films. On balance, this work provides a new insight for the development of novel antithrombogenic biomaterials, opening up new possibilities for devising blood-interaction surfaces.


Assuntos
Quitosana , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Quitosana/química , Ácido Hialurônico/química , Polissacarídeos/química , Sulfatos , Propriedades de Superfície
2.
Appl Biochem Biotechnol ; 190(3): 949-965, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31630339

RESUMO

Alzheimer's disease (AD) is related to the anomalous binding that occurs between amyloid-ß peptide (Aß) and copper ion, through imidazole ring of histidine (His), as stated in the literature. It is also known that high-affinity metal ion chelators can be pharmacologically used as a possible therapeutic approach. In this work, we tested the ability "in vitro" of chitosan (Chi) to reduce Aß aggregation and Thioflavin T binding assay indicated that chitosan has affinity for Aß and interferes in its aggregation. We also tested the ability of Chi to uptake copper ions in the presence of Aß or His. Equilibrium data reveals that chitosan acted as an effective chelating agent competing with Aß and histidine for copper binding. The addition of histidine or Aß in the system promotes an unfolding of chitosan chains, as verified by small-angle X-ray scattering. Extended X-ray absorption fine structure and XPS spectra show that new copper interactions with groups containing nitrogen in the presence of histidine may occur. These results can help understanding fundamental chemical interactions among species detected in AD and biopolymers, opening up possibilities for new treatment approaches for this disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Quitosana/metabolismo , Cobre/metabolismo , Histidina/metabolismo , Doença de Alzheimer/metabolismo , Benzotiazóis/química , Biopolímeros/metabolismo , Fluorescência , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA