Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(2): 63, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36670263

RESUMO

The combination of CO2 laser ablation and electrochemical surface treatments is demonstrated to improve the electrochemical performance of carbon black/polylactic acid (CB/PLA) 3D-printed electrodes through the growth of flower-like Na2O nanostructures on their surface. Scanning electron microscopy images revealed that the combination of treatments ablated the electrode's polymeric layer, exposing a porous surface where Na2O flower-like nanostructures were formed. The electrochemical performance of the fabricated electrodes was measured by the reversibility of the ferri/ferrocyanide redox couple presenting a significantly improved performance compared with electrodes treated by only one of the steps. Electrodes treated by the combined method also showed a better electrochemical response for tyrosine oxidation. These electrodes were used as a non-enzymatic tyrosine sensor for quantification in human urine samples. Two fortified urine samples were analyzed, and the recovery values were 106 and 109%. The LOD and LOQ for tyrosine determination were 0.25 and 0.83 µmol L-1, respectively, demonstrating that the proposed devices are suitable sensors for analyses of biological samples, even at low analyte concentrations.


Assuntos
Terapia a Laser , Nanoestruturas , Humanos , Dióxido de Carbono , Nanoestruturas/química , Oxirredução , Impressão Tridimensional
2.
Mikrochim Acta ; 188(11): 388, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34668076

RESUMO

For the first time the development of an electrochemical method for simultaneous quantification of Zn2+ and uric acid (UA) in sweat is described using an electrochemically treated 3D-printed working electrode. Sweat analysis can provide important information about metabolites that are valuable indicators of biological processes. Improved performance of the 3D-printed electrode was achieved after electrochemical treatment of its surface in an alkaline medium. This treatment promotes the PLA removal (insulating layer) and exposes carbon black (CB) conductive sites. The pH and the square-wave anodic stripping voltammetry technique were carefully adjusted to optimize the method. The peaks for Zn2+ and UA were well-defined at around - 1.1 V and + 0.45 V (vs. CB/PLA pseudo-reference), respectively, using the treated surface under optimized conditions. The calibration curve showed a linear range of 1 to 70 µg L-1 and 1 to 70 µmol L-1 for Zn2+ and UA, respectively. Relative standard deviation values were estimated as 4.8% (n = 10, 30 µg L-1) and 6.1% (n = 10, 30 µmol L-1) for Zn2+ and UA, respectively. The detection limits for Zn2+ and UA were 0.10 µg L-1 and 0.28 µmol L-1, respectively. Both species were determined simultaneously in real sweat samples, and the achieved recovery percentages were between 95 and 106% for Zn2+ and 82 and 108% for UA.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Suor/química , Ácido Úrico/química , Zinco/química
3.
Biosens Bioelectron ; 170: 112684, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049481

RESUMO

This work presents a novel procedure involving the sequential chemical treatment to generate reduced graphene oxide (rGO) within 3D-printed polylactic acid (PLA) electrodes and their potential applications for sensing and biosensing. A new configuration of a compact all-3D-printed electrochemical device containing the three electrodes is presented, in which the working electrode was treated to generate rGO within PLA (rGO-PLA) after treatment within NaBH4. The rGO-PLA electrodes presented a notable current increase for the redox probe ferrocene-methanol in comparison with the same surface treated by dimethylformamide immersion. Also, the electrochemical impedance spectroscopic data that presented the lowest resistance to electron transfer for the proposed electrode. The electrochemical experiments were in accordance with Raman spectra and surface roughness obtained by atomic force microscopy images. As proofs-of-concept, the rGO-PLA electrode was applied for serotonin determination in synthetic urine using differential-pulse voltammetry with a limit of detection of 0.032 µmol L-1. Also, the second application involved the fabrication of a tyrosinase-based biosensor capable of determining catechol in natural water samples with a limit of detection of 0.26 µmol L-1. Based on both applications, the 3D-printed rGO-PLA showed to be an excellent platform for sensing and biosensing purposes.


Assuntos
Técnicas Biossensoriais , Grafite , Técnicas Eletroquímicas , Eletrodos , Poliésteres , Impressão Tridimensional
4.
Anal Chim Acta ; 1132: 10-19, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32980099

RESUMO

The fabrication of carbon black/polylactic acid (PLA) electrodes using a 3D printing pen is presented and compared with electrodes obtained by a desktop fused deposition modelling (FDM) 3D printer. The 3D pen was used for the fast production of electrodes in two designs using customized 3D printed parts to act as template and guide the reproducible application of the 3D pen: (i) a single working electrode at the bottom of a 3D-printed cylindrical body and (ii) a three-electrode system on a 3D-printed planar substrate. Both devices were electrochemically characterized using the redox probe [Fe(CN)6]3-/4- via cyclic voltammetry, which presented similar performance to an FDM 3D-printed electrode or a commercial screen-printed carbon electrode (SPE) regarding peak-to-peak separation (ΔEp) and current density. The surface treatment of the carbon black/PLA electrodes fabricated by both 3D pen and FDM 3D-printing procedures provided substantial improvement of the electrochemical activity by removing excess of PLA, which was confirmed by scanning electron microscopic images for electrodes fabricated by both procedures. Structural defects were not inserted after the electrochemical treatment as shown by Raman spectra (iD/iG), which indicates that the use of 3D pen can replace desktop 3D printers for electrode fabrication. Inter-electrode precision for the best device fabricated using the 3D pen (three-electrode system) was 4% (n = 5) considering current density and anodic peak potential for the redox probe. This device was applied for the detection of 2,4,6-trinitrotoluene (TNT) via square-wave voltammetry of a single-drop of 100 µL placed upon the thee-electrode system, resulting in three reduction peaks commonly verified for TNT on carbon electrodes. Limit of detection of 1.5 µmol L-1, linear range from 5 to 500 µmol L-1 and RSD lower than 4% for 10 repetitive measurements of 100 µmol L-1 TNT were obtained. The proposed devices can be reused after polishing on sandpaper generating new electrode surfaces, which is an extra advantage over chemically-modified electrochemical sensors applied for TNT detection.

5.
Anal Chim Acta ; 1118: 73-91, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32418606

RESUMO

Additive manufacturing or three-dimensional (3D)-printing is an emerging technology that has been applied in the development of novel materials and devices for a wide range of applications, including Electrochemistry and Analytical Chemistry areas. This review article focuses on the contributions of 3D-printing technology to the development of electrochemical sensors and complete electrochemical sensing devices. Due to the recent contributions of 3D-printing within this scenario, the aim of this review is to present a guide for new users of 3D-printing technology considering the required features for improved electrochemical sensing using 3D-printed sensors. At the same time, this is a comprehensive review that includes most 3D-printed electrochemical sensors and devices already reported using selective laser melting (SLM) and fused deposition modeling (FDM) 3D-printers. The latter is the most affordable 3D-printing technique and for this reason has been more often applied for the fabrication of electrochemical sensors, also due to commercially-available conductive and non-conductive filaments. Special attention is given to critically discuss the need for the surface treatment of FDM 3D-printed platforms to improve their electrochemical performance. The insertion of biochemical and chemical catalysts on the 3D-printed surfaces are highlighted as well as novel strategies to fabricate filaments containing chemical modifiers within the polymeric matrix. Some examples of complete electrochemical sensing systems obtained by 3D-printing have successfully demonstrated the enormous potential to develop portable devices for on-site applications. The freedom of design enabled by 3D-printing opens many possibilities of forthcoming investigations in the area of analytical electrochemistry.

6.
Talanta ; 198: 237-241, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30876556

RESUMO

A novel and indirect voltammetric procedure for the selective determination of formaldehyde is described. It is based on the oxidation of 3,5-diacetyl-1,4-dihydrolutidine (DDL) on an unmodified glassy-carbon electrode (GCE), generated by the selective reaction between formaldehyde and acetylacetone. A single oxidation peak of DDL at +0.8 V was observed, while formaldehyde is not electroactive under this condition, showing that this reaction can be used to indirect and selective detection of formaldehyde. Under the optimized conditions, a linear response between 0.4 and 40.0 mg L-1 and a detection limit of 0.13 mg L-1 were achieved, with a relative standard deviation of 0.7% (n = 10, 10 mg L-1). Due to the selectivity of this reaction to formaldehyde, this method is free from interference of other aldehydes. The procedure is a promising alternative for rapid formaldehyde determination in a wide range of samples.

7.
Talanta ; 178: 102-108, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136791

RESUMO

This work showed a flow system designed with solenoid valves for preconcentration of fluoride using SPADNS method in water samples. The analyte was preconcentrated in a mini-column coated with Layered Double Hydroxides (LDH) used as adsorbent. Then, the fluoride ions were eluted with 0.5molL-1 sodium hydroxide and determined by spectrophotometry. The variables that affect the system such adsorbent mass, type of eluent, solutions flow rate, reagent concentration and pH effect were critically evaluated. Under optimized conditions, the detection limit, coefficient of variation, linear range and preconcentration factor were estimated at 15µgL-1 (99.7% confidence level), 0.8% (500µgL-1, n = 10), 50-500µgL-1 and 10, respectively. The accuracy of the method was evaluated by analysis of ALPHA APS 1076 (Simulated Rain Water) certified material, the values were not significantly different at a 95% level of confidence. The method was applied for fluoride determination in water samples and the levels found were below the maximum values established by Brazilian environmental and health legislations.


Assuntos
Análise de Injeção de Fluxo/métodos , Fluoretos/química , Hidróxidos/química , Calorimetria , Fluoretos/análise , Concentração de Íons de Hidrogênio , Limite de Detecção
8.
Talanta ; 174: 420-427, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28738602

RESUMO

This work presents a portable electrochemical system for the continuous monitoring of corrosion inhibitors in a wide range of matrices including ethanol, seawater and mineral oil following simple dilution of the samples. Proof-of-concept is demonstrated for the sensing of 2,5-dimercapto-1,3,5-thiadiazole (DMCT), an important corrosion inhibitor. Disposable screen-printed graphitic electrodes (SPGEs) associated with a portable batch-injection cell are proposed for the amperometric determination of DMCT following sample dilution with electrolyte (95% v/v ethanol + 5% v/v 0.1molL-1 H2SO4 solution). This electrolyte was compatible with all samples and the organic-resistant SPGE could be used continuously for more than 200 injections (100µL injected at 193µLs-1) free from effects of adsorption of DMCT, which have a great affinity for metallic surfaces, and dissolution of the other reported SPGE inks which has hampered prior research efforts. Fast (180h-1) and precise responses (RSD < 3% n = 10) with a detection limit of 0.3µmolL-1 was obtained. The accuracy of the proposed method was attested through recovery tests (93-106%) and the reasonable agreement of results of DMCT concentrations in samples analyzed by both proposed and spectrophotometric (comparative) methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA