RESUMO
The recent growth of the Internet of Things' services and applications has increased data processing and storage requirements. The Edge computing concept aims to leverage the processing capabilities of the IoT and other devices placed at the edge of the network. One embodiment of this paradigm is Fog computing, which provides an intermediate and often hierarchical processing tier between the data sources and the remote Cloud. Among the major benefits of this concept, the end-to-end latency can be decreased, thus favoring time-sensitive applications. Moreover, the data traffic at the network core and the Cloud computing workload can be reduced. Combining the Fog computing paradigm with Complex Event Processing (CEP) and data fusion techniques has excellent potential for generating valuable knowledge and aiding decision-making processes in the Internet of Things' systems. In this context, we propose a multi-tier complex event processing approach (sensor node, Fog, and Cloud) that promotes fast decision making and is based on information with 98% accuracy. The experiments show a reduction of 77% in the average time of sending messages in the network. In addition, we achieved a reduction of 82% in data traffic.
Assuntos
Internet das Coisas , Agricultura , Computação em NuvemRESUMO
Irrigation is one of the most water-intensive agricultural activities in the world, which has been increasing over time. Choosing an optimal irrigation management plan depends on having available data in the monitoring field. A smart agriculture system gathers data from several sources; however, the data are not guaranteed to be free of discrepant values (i.e., outliers), which can damage the precision of irrigation management. Furthermore, data from different sources must fit into the same temporal window required for irrigation management and the data preprocessing must be dynamic and automatic to benefit users of the irrigation management plan. In this paper, we propose the Smart&Green framework to offer services for smart irrigation, such as data monitoring, preprocessing, fusion, synchronization, storage, and irrigation management enriched by the prediction of soil moisture. Outlier removal techniques allow for more precise irrigation management. For fields without soil moisture sensors, the prediction model estimates the matric potential using weather, crop, and irrigation information. We apply the predicted matric potential approach to the Van Genutchen model to determine the moisture used in an irrigation management scheme. We can save, on average, between 56.4% and 90% of the irrigation water needed by applying the Zscore, MZscore and Chauvenet outlier removal techniques to the predicted data.