Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795158

RESUMO

The presence of volatile organic compounds in groundwater is a major concern when it is used as a drinking water source because many of these compounds can adversely affect human health. This work reports on the preparation and characterization of white and red Brazilian São Simão's kaolinite-TiO2 nanocomposites and their use as catalysts in the photochemical degradation of toluene, a significant volatile organic compound. The nanocomposites were prepared by a sol-gel procedure, using titanium bis(triethanolaminate)diisopropoxide as a precursor. Thermal treatments of the nanocomposites led to different polymorphic titania phases, while the clay changed from kaolinite to metakaolinite. This structural evolution strongly affected the photocatalytic degradation behavior-all the solids efficiently degraded toluene and the solid calcined at 400 °C, formed by kaolinite and anatase, showed the best behavior (90% degradation). On extending the photochemical treatment up to 48 h, high mineralization levels were reached. The advantage of photodegradation using the nanocomposites was confirmed by comparing the results from isolated components (titanium dioxide and kaolinite) to observe that the nanocomposites displayed fundamental importance to the photodegradation pathways of toluene.

2.
ACS Appl Mater Interfaces ; 7(20): 10853-62, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25938521

RESUMO

This study aimed to assess the capacity of saponite modified with n-hexadecyltrimethylammonium bromide (CTAB) and/or 3-aminopropyltriethoxysilane (APTS) to adsorb and remove caffeine from aqueous solutions. Powder X-ray diffraction (PXRD) revealed increased basal spacing in the modified saponites. Small-angle X-ray scattering (SAXS) confirmed the PXRD results; it also showed how the different clay layers were stacked and provided information on the swelling of natural saponite and of the saponites functionalized with CTAB and/or APTS. Thermal analyses, infrared spectroscopy, scanning electron microscopy, element chemical analysis, and textural analyses confirmed functionalization of the natural saponite. The maximum adsorption capacity at equilibrium was 80.54 mg/g, indicating that the saponite modified with 3-aminopropyltriethoxysilane constitutes an efficient and suitable caffeine adsorbent.


Assuntos
Silicatos de Alumínio/química , Cafeína/isolamento & purificação , Compostos Orgânicos/química , Purificação da Água/métodos , Difração de Raios X/métodos , Adsorção , Cafeína/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Poluentes Químicos da Água/isolamento & purificação
3.
ACS Appl Mater Interfaces ; 3(4): 1311-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21446749

RESUMO

Luminescent hybrid materials derived from kaolinite appear as promising materials for optical applications due to their specific properties. The spectroscopic behavior of terbium picolinate complexes covalently grafted on kaolinite and the influence of the secondary ligand and thermal treatment on luminescence are reported. The resulting materials were characterized by thermal analysis, element analysis, X-ray diffraction, infrared absorption spectroscopy, and photoluminescence. The thermogravimetric curves indicated an enhancement in the thermal stability up to 300 °C for the lanthanide complexes covalently grafted on kaolinite, with respect to the isolated complexes. The increase in the basal spacing observed by X-ray diffraction confirmed the insertion of the organic ligands into the basal space of kaolinite, involving the formation of a bond between Al-OH and the carboxylate groups, as evidenced by infrared spectroscopy. The luminescent hybrid material exhibited a stronger characteristic emission of Tb(3+) compared to the isolated complex. The excitation spectra displayed a broad band at 277 nm, assigned to a ligand-to-metal charge transfer, while the emission spectra presented bands related to the electronic transitions characteristic of the Tb(3+) ion from the excited state (5)D(4) to the states (7)F(J) (J=5, 4, and 3), with the 4→5 transition having high intensity with green emission.

4.
J Org Chem ; 67(23): 8147-50, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12423144

RESUMO

Flash vacuum pyrolysis (fvp) reactions of NH-pyrazole (1) and 3,5-diphenylpyrazole (2) were investigated in the presence of anionic clays having hydrotalcite structure (HT). Solid catalysts with Mg:Al ratio equal to 2:1 containing carbonate (HT-1), nitrate (HT-2), and silicate (HT-3) as interlayer anions were employed. Between 400 and 600 degrees C, compound 1 remained almost unchanged and only unidentified volatile products were detected in small amounts. In contrast, 2 afforded benzonitrile (3) and phenylacetonitrile (4) by a ring fragmentation reaction at 450 degrees C. At a higher temperature (660 degrees C), the same products obtained in homogeneous fvp reactions, i.e., 2-phenylindene (5) and 3-phenylindene (6), were obtained showing no catalysis by HT under these conditions. Results showed that the yield is strongly dependent on the nature of the interlayer anion in the hydrotalcite structure. In comparison with reactions of 2 over zeolites, HTs exhibit selectivity for ring fragmentation reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA