Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharm Pharmacol ; 63(6): 800-5, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21585378

RESUMO

OBJECTIVES: Addition of the antimicrobial preservative benzyl alcohol to reconstitution buffer promotes the formation of undesirable aggregates in multidose protein formulations. Herein we investigated the efficiency of PEGylation (attachment of poly(ethylene glycol)) to prevent benzyl alcohol-induced aggregation of the model protein α-chymotrypsinogen A (aCTgn). METHODS: Various PEG-aCTgn conjugates were prepared using PEG with a molecular weight of either 700 or 5000 Da by varying the PEG-to-protein ratio during synthesis and the formation of insoluble aggregates was studied. The effect of benzyl alcohol on the thermodynamic stability and tertiary structure of aCTgn was also examined. KEY FINDINGS: When the model protein was reconstituted in buffer containing 0.9% benzyl alcohol, copious amounts of buffer-insoluble aggregates formed within 24 h (>10%). Benzyl alcohol-induced aggregation was completely prevented when two or five molecules of PEG with a molecular weight of 5000 Da were attached to the protein, whereas two or four molecules of bound 700 Da PEG were completely inefficient in preventing aggregation. Mechanistic investigations excluded prevention of structural perturbations or increased thermodynamic stability by PEGylation from being responsible for the prevention of aggregation. Simple addition of PEG to the buffer was also inefficient and PEG had to be covalently linked to the protein to be efficient. CONCLUSIONS: The most likely explanation for the protective effect of the 5000 Da PEG is shielding of exposed hydrophobic protein surface area and prevention of protein-protein contacts (molecular spacer effect).


Assuntos
Álcool Benzílico/química , Quimotripsinogênio/administração & dosagem , Portadores de Fármacos/química , Polietilenoglicóis/química , Soluções Tampão , Química Farmacêutica , Quimotripsinogênio/química , Peso Molecular
2.
Biotechnol Bioeng ; 101(6): 1142-9, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18781698

RESUMO

Protein stability remains one of the main factors limiting the realization of the full potential of protein therapeutics. Poly(ethylene glycol) (PEG) conjugation to proteins has evolved into an important tool to overcome instability issues associated with proteins. The observed increase in thermodynamic stability of several proteins upon PEGylation has been hypothesized to arise from reduced protein structural dynamics, although experimental evidence for this hypothesis is currently missing. To test this hypothesis, the model protein alpha-chymotrypsin (alpha-CT) was covalently modified with PEGs with molecular weights (M(W)) of 700, 2,000 and 5,000 and the degree of modification was systematically varied. The procedure did not cause significant tertiary structure changes. Thermodynamic unfolding experiments revealed that PEGylation increased the thermal transition temperature (T(m)) of alpha-CT by up to 6 degrees C and the free energy of unfolding [DeltaG(U) (25 degrees C)] by up to 5 kcal/mol. The increase in stability was found to be independent of the PEG M(W) and it leveled off after an average of four PEG molecules were bound to alpha-CT. Fourier-transformed infrared (FTIR) H/D exchange experiments were conducted to characterize the conformational dynamics of the PEG-conjugates. It was found that the magnitude of thermodynamic stabilization correlates with a reduction in protein structural dynamics and was independent of the PEG M(W). Thus, the initial hypothesis proved positive. Similar to the thermodynamic stabilization of proteins by covalent modification with glycans, PEG thermodynamically stabilizes alpha-CT by reducing protein structural dynamics. These results provide guidance for the future development of stable protein formulations.


Assuntos
Quimotripsina/química , Quimotripsina/metabolismo , Dicroísmo Circular , Estabilidade Enzimática , Análise de Fourier , Polietilenoglicóis/metabolismo , Estrutura Terciária de Proteína , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA