Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mycologia ; 111(3): 445-455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30964414

RESUMO

A new Phytophthora species was found associated with gummosis in black wattle plantations in the subtropical, humid, south of Brazil. The new species Phytophthora acaciae is formally named herein based on phylogenetic and morphological analyses. This is the fourth Phytophthora species found from this pathogen complex in black wattle plantations causing gummosis in Brazil. The other three species are P. nicotianae, P. boehmeriae, and P. frigida. Phytophthora acaciae is heterothallic with amphigynous antheridia, noncaducous, papillate sporangia and is placed in the Phytophthora clade 2 based on nuc rDNA internal transcribed spacer (ITS1-5.8S-ITS2 = ITS) sequences. Maximum parsimony and maximum likelihood phylogenetic analyses of P. acaciae isolates based on multigene sequences, including partial DNA sequences of three nuclear protein-coding genes (ß-tubulin, translation elongation factor-1α, and ras-related protein), two mitochondrial protein-coding genes (cytochrome c oxidase subunits I and II), in addition to ITS sequence data, support the delimitation of this new species on Acacia mearnsii from the other previously described clade 2 Phytophthora species. Pathogenicity trial confirmed that the new species causes necrotic lesions on the plant stem, with either the presence or absence of gum.


Assuntos
Filogenia , Phytophthora/classificação , Phytophthora/genética , Doenças das Plantas/microbiologia , Animais , Brasil , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Fator 1 de Elongação de Peptídeos/genética , Phytophthora/patogenicidade , Análise de Sequência de DNA , Tubulina (Proteína)/genética
2.
Mol Biol Evol ; 33(2): 478-91, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26576850

RESUMO

As the oomycete pathogen causing potato late blight disease, Phytophthora infestans triggered the famous 19th-century Irish potato famine and remains the leading cause of global commercial potato crop destruction. But the geographic origin of the genotype that caused this devastating initial outbreak remains disputed, as does the New World center of origin of the species itself. Both Mexico and South America have been proposed, generating considerable controversy. Here, we readdress the pathogen's origins using a genomic data set encompassing 71 globally sourced modern and historical samples of P. infestans and the hybrid species P. andina, a close relative known only from the Andean highlands. Previous studies have suggested that the nuclear DNA lineage behind the initial outbreaks in Europe in 1845 is now extinct. Analysis of P. andina's phased haplotypes recovered eight haploid genome sequences, four of which represent a previously unknown basal lineage of P. infestans closely related to the famine-era lineage. Our analyses further reveal that clonal lineages of both P. andina and historical P. infestans diverged earlier than modern Mexican lineages, casting doubt on recent claims of a Mexican center of origin. Finally, we use haplotype phasing to demonstrate that basal branches of the clade comprising Mexican samples are occupied by clonal isolates collected from wild Solanum hosts, suggesting that modern Mexican P. infestans diversified on Solanum tuberosum after a host jump from a wild species and that the origins of P. infestans are more complex than was previously thought.


Assuntos
Evolução Molecular , Genoma , Genômica , Hibridização Genética , Phytophthora infestans/classificação , Phytophthora infestans/genética , Fluxo Gênico , Genoma Mitocondrial , Genômica/métodos , Genótipo , Haplótipos , Desequilíbrio de Ligação , Filogenia , Doenças das Plantas , Reprodução/genética , América do Sul
3.
Curr Genet ; 61(4): 567-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25754775

RESUMO

Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there.


Assuntos
Genoma Mitocondrial , Mitocôndrias/genética , Filogenia , Phytophthora infestans/genética , Phytophthora/genética , Evolução Biológica , Quimera/microbiologia , Colômbia , DNA Mitocondrial/genética , Equador , Solanum lycopersicum/microbiologia , Peru , Filogeografia , Phytophthora/classificação , Phytophthora infestans/classificação , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Solanum tuberosum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA