Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
J Biol Chem ; 277(45): 42447-55, 2002 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-12202479

RESUMO

Different mitochondrial nitric-oxide synthase (mtNOS) isoforms have been described in rat and mouse tissues, such as liver, thymus, skeletal muscle, and more recently, heart and brain. The modulation of these variants by thyroid status, hypoxia, or gene deficiency opens a broad spectrum of mtNOS-dependent tissue-specific functions. In this study, a new NOS variant is described in rat brain with an M(r) of 144 kDa and mainly localized in the inner mitochondrial membrane. During rat brain maturation, the expression and activity of mtNOS were maximal at the late embryonic stages and early postnatal days followed by a decreased expression in the adult stage (100 +/- 9 versus 19 +/- 2 pmol of [(3)H]citrulline/min/mg of protein, respectively). This temporal pattern was opposite to that of the cytosolic 157-kDa nNOS protein. Mitochondrial redox changes followed the variations in mtNOS activity: mtNOS-dependent production of hydrogen peroxide was maximal in newborns and decreased markedly in the adult stage, thus reflecting the production and utilization of mitochondrial matrix nitric oxide. Moreover, the activity of brain Mn-superoxide dismutase followed a developmental pattern similar to that of mtNOS. Cerebellar granular cells isolated from newborn rats and with high mtNOS activity exhibited maximal proliferation rates, which were decreased by modifying the levels of either hydrogen peroxide or nitric oxide. Altogether, these findings support the notion that a coordinated modulation of mtNOS and Mn-superoxide dismutase contributes to establish the rat brain redox status and participate in the normal physiology of brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Mitocôndrias/enzimologia , Óxido Nítrico Sintase/metabolismo , Envelhecimento , Animais , Encéfalo/enzimologia , Cálcio/farmacologia , Fracionamento Celular , Desenvolvimento Embrionário e Fetal , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Variação Genética , Cinética , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo I , Ratos , Ratos Wistar , Partículas Submitocôndricas/enzimologia
3.
Free Radic Biol Med ; 32(2): 115-21, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11796199

RESUMO

Oxidation of catecholamines is suggested to contribute to oxidative stress in Parkinson's disease. Nitric oxide (*NO) is able to oxidize cyclic compounds like ubiquinol; moreover, recent lines of evidence proposed a direct role of *NO and its by-product peroxynitrite in the pathophysiology of Parkinson's disease. The aim of this study was to analyze the potential reaction between 6-hydroxydopamine, a classic inducer of Parkinson's disease, and *NO. The results showed that *NO reacts with the deprotonated form of 6-hydroxydopamine at pH 7 and 37 degrees C with a second-order rate constant of 1.5 x 10(3) M(-1) x s(-1) as calculated by the rate of *NO decay measured with an amperometric sensor. Accordingly, the rates of formation of 6-hydroxy-dopamine quinone were dependent on *NO concentration. The coincubation of *NO and 6-hydroxydopamine with either bovine serum albumin or alpha-synuclein led to tyrosine nitration of the protein, in a concentration dependent-manner and sensitive to superoxide dismutase. These findings suggest the formation of peroxynitrite during the redox reactions following the interaction of 6-hydroxydopamine with *NO. The implications of this reaction for in vivo models are discussed in terms of the generation of reactive nitrogen and oxygen species within a propagation process that may play a significant role in neurodegenerative diseases.


Assuntos
Óxido Nítrico/metabolismo , Oxidopamina/metabolismo , Doença de Parkinson/metabolismo , Ácido Peroxinitroso/metabolismo , Tirosina/análogos & derivados , Tirosina/biossíntese , Animais , Bovinos , Proteínas do Tecido Nervoso/metabolismo , Oxirredução , Oxidopamina/efeitos adversos , Doença de Parkinson Secundária/induzido quimicamente , Soroalbumina Bovina/metabolismo , Superóxido Dismutase/farmacologia , Sinucleínas , Tirosina/antagonistas & inibidores , alfa-Sinucleína
4.
Neurotox Res ; 4(2): 141-5, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12829414

RESUMO

Parkinson's disease (PD) is a worldwide neurodegenerative disorder. Although the etiology has been linked to genetic and environmental factors, curative treatment remains a challenge. Several hypotheses support different pathophysiological mechanisms related to oxidative stress, glutamate-mediated neurotoxicity, mitochondrial energetic impairment and nitric oxide (NO) over-production. Moreover, apoptotic mechanisms have been identified in PD. In this way, classical drugs such as amantadine, selegiline and dopamine agonists show only a modest neuroprotective effect. New strategies with enormous potential are now under development. These include neuroprotectants and agents that might rescue dopaminergic neurons. Glutamate receptor antagonists, neurotrophins, neuroimmunophilins, adenosine A2A receptor antagonists, iron-chelators and NO modulators, as well as caspase inhibitors have evident neuroprotective properties in experimental PD models.

5.
Medicina (B.Aires) ; Medicina (B.Aires);58(4): 341-9, 1998.
Artigo em Espanhol | LILACS | ID: lil-217512

RESUMO

El síndrome de shock ha sido descripto en forma clásica como el producto de la disminución de la perfusión tisular y la disponibilidad de O2; sin embargo, en algunos tipos de shock como el séptico o el traumático ambos pueden hallarse aumentados en algunas circulaciones regionales. Hace ya una década se han descripto alteraciones mitocondriales consistentes en un desacomplamiento de la fosforilación oxidativa en el shock endotoxémico y hemorrágico experimentales y en el ser humano. Recientemente, el descubrimiento del óxido nítrico (NO) y su aumento en los estados de shock, ha abierto nuevas perspectivas en la comprensión del problema. El NO produce vasodilatación y al mismo tiempo, determina un aumento en la producción mitocondrial de especies activas del O(2), como del anión superóxido. Ambos radicales reaccionan entre sí y pueden formar otro oxidante con capacidad para nitrar residuos fenólicos de las proteínas: el peroxinitrito. Este efecto conlleva una alteración de la funcionalidad de diferentes enzimas mitocondriales como la succinato deshidrogenasa y la ATPasa y conduce a la disfunción mitocondrial, a una disminución de los niveles de compuestos de alta energia y a la insuficiencia multiorgánica. El aumento de la liberación de NO se debe al efecto de péptidos circulares y de neutrófilos adheridos al endotelio y a la indución por mediadores inflamatorios, como el TNF-alpha y las interleuquinas, de la NOS inducible (iNOS) en el endotelio y tejidos. Se propone que el estado de shock es la consecuencia de un disbalance entre el NO y el O(2) y sus metabolitos.


Assuntos
Humanos , Animais , Adenosina Trifosfatases/metabolismo , Mediadores da Inflamação/metabolismo , Mitocôndrias/enzimologia , Neutrófilos/metabolismo , Choque/metabolismo , Comunicação Celular/fisiologia , Mitocôndrias/fisiologia , Oxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Choque/fisiopatologia , Vasodilatação/fisiologia
6.
Medicina [B.Aires] ; 58(4): 341-9, 1998.
Artigo em Espanhol | BINACIS | ID: bin-17976

RESUMO

El síndrome de shock ha sido descripto en forma clásica como el producto de la disminución de la perfusión tisular y la disponibilidad de O2; sin embargo, en algunos tipos de shock como el séptico o el traumático ambos pueden hallarse aumentados en algunas circulaciones regionales. Hace ya una década se han descripto alteraciones mitocondriales consistentes en un desacomplamiento de la fosforilación oxidativa en el shock endotoxémico y hemorrágico experimentales y en el ser humano. Recientemente, el descubrimiento del óxido nítrico (NO) y su aumento en los estados de shock, ha abierto nuevas perspectivas en la comprensión del problema. El NO produce vasodilatación y al mismo tiempo, determina un aumento en la producción mitocondrial de especies activas del O(2), como del anión superóxido. Ambos radicales reaccionan entre sí y pueden formar otro oxidante con capacidad para nitrar residuos fenólicos de las proteínas: el peroxinitrito. Este efecto conlleva una alteración de la funcionalidad de diferentes enzimas mitocondriales como la succinato deshidrogenasa y la ATPasa y conduce a la disfunción mitocondrial, a una disminución de los niveles de compuestos de alta energia y a la insuficiencia multiorgánica. El aumento de la liberación de NO se debe al efecto de péptidos circulares y de neutrófilos adheridos al endotelio y a la indución por mediadores inflamatorios, como el TNF-alpha y las interleuquinas, de la NOS inducible (iNOS) en el endotelio y tejidos. Se propone que el estado de shock es la consecuencia de un disbalance entre el NO y el O(2) y sus metabolitos. (AU)


Assuntos
Humanos , Animais , Choque/metabolismo , Mitocôndrias/enzimologia , Neutrófilos/metabolismo , Adenosina Trifosfatases/metabolismo , Mediadores da Inflamação/metabolismo , Choque/fisiopatologia , Mitocôndrias/fisiologia , Comunicação Celular/fisiologia , Vasodilatação/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Oxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA