Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Salamandra, v. 56, n. 1, p. 39-47, fev. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2958

RESUMO

Literature data suggests that Thamnodynastes strigatus (Serpentes, Dipsadidae) is a snake that actively forages for anurans near waterbodies, using several microhabitats for this activity (e.g., shrubs, soil, and water). However, herein we present dissonant data previously known to the species, both concerning type of prey and foraging strategy. A total of 72 observations were performed exclusively at night, when snakes were in vegetation near streams in 93% of the cases. Among these observations, 41 were active snakes, and most of them (97%) were in an ambush position on the vegetation, peering at fishes. On two occasions, the snakes used a lingual lure behavior in order to attract fishes. This is only the sixth species in which this behavior has been observed, and the first in South America. Therefore, we provide additional data on T. strigatus habitat activity and habitat use, as well as unpublished data on ambush and lingual lure behavior for the Neotropical genus Thamnodynastes

2.
J Therm Biol ; 76: 52-57, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30143297

RESUMO

Rising temperatures accompanying global climate change are expected to affect mountain lizards. Therefore, basic information on how these ectotherms deal with their thermal environment is important for further management. We conducted a field study to evaluate how body temperature of the small-sized mountain lizard Eurolophosaurus nanuzae relates to the thermal environment. After capture, the body temperature of the lizards was measured immediately, quickly followed by the substrate and air temperatures, wind intensity, and solar radiation at the capture locations. Linear relationships showed that the body temperature of individuals was positively related to rocky substrate temperatures but negatively related to wind speed. However, air temperature and solar radiation were unrelated to body temperature. Although the substrate is an important heat source for E. nanuzae, in an open environment it can reach temperatures up to 10 °C above the maximum body temperatures of lizards, and can thus be a low-quality thermal substrate. However, individuals seemed to use wind as a cooling source to counterbalance the risks of overheating from high substrate temperatures. As the montane environment that E. nanuzae inhabits seems to have hotter temperatures than those preferred by the species, lizards should benefit from the cooling winds to keep their body temperature at appropriate levels. Different to previous studies that evaluated wind effects on body temperatures of lizards, our results showed that winds seemed to promote thermoregulation for E. nanuzae.


Assuntos
Regulação da Temperatura Corporal , Lagartos/fisiologia , Animais , Ecossistema , Feminino , Masculino , Energia Solar , Temperatura , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA