Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Genet Mol Biol ; 46(1 Suppl 1): e20220190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144919

RESUMO

NAC transcription factors are plant-specific proteins involved in many processes during the plant life cycle and responses to biotic and abiotic stresses. Previous studies have shown that stress-induced OsNAC5 from rice (Oryza sativa L.) is up-regulated by senescence and might be involved in control of iron (Fe) and zinc (Zn) concentrations in rice seeds. Aiming a better understanding of the role of OsNAC5 in rice plants, we investigated a mutant line carrying a T-DNA insertion in the promoter of OsNAC5, which resulted in enhanced expression of the transcription factor. Plants with OsNAC5 enhanced expression were shorter at the seedling stage and had reduced yield at maturity. In addition, we evaluated the expression level of OsNAC6, which is co-expressed with OsNAC5, and found that enhanced expression of OsNAC5 leads to increased expression of OsNAC6, suggesting that OsNAC5 might regulate OsNAC6 expression. Ionomic analysis of leaves and seeds from the OsNAC5 enhanced expression line revealed lower Fe and Zn concentrations in leaves and higher Fe concentrations in seeds than in WT plants, further suggesting that OsNAC5 may be involved in regulating the ionome in rice plants. Our work shows that fine-tuning of transcription factors is key when aiming at crop improvement.

3.
New Phytol ; 237(6): 1951-1961, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36626937

RESUMO

Iron (Fe) is essential for virtually all organisms, being irreplaceable because of its electrochemical properties that enable many biochemical processes, including photosynthesis. Besides its abundance, Fe is generally found in the poorly soluble form of ferric iron (Fe3+ ), while most plants uptake the soluble form Fe2+ . The model angiosperm Arabidopsis thaliana, for example, captures Fe through a mechanism that lowers rhizosphere pH through proton pumping that increases Fe3+ solubility, which is then reduced by a membrane-bound reductase and transported into the cell by the zinc-regulated, iron-regulated transporter-like protein (ZIP) family protein AtIRT1. ZIP proteins are transmembrane transporters of divalent metals such as Fe2+ , Zn2+ , Mn2+ , and Cd2+ . In this work, we investigated the evolution of functional homologs of IRON-REGULATED TRANSPORTER 1/ZIP in the supergroup Archaeplastida (Viridiplantae + Rhodophyta + Glaucophyta) using 51 genomes of diverse lineages. Our analyses suggest that Fe is acquired through deeply divergent ZIP proteins in land plants and chlorophyte green algae, indicating that Fe2+ uptake by ZIP proteins evolved independently at least twice throughout green plant evolution. Our results indicate that the archetypical IRON-REGULATED TRANSPORTER (IRT) proteins from angiosperms likely emerged before the origin of land plants during early streptophyte algae terrestrialization, a process that required the evolution of Fe acquisition in terrestrial subaerial settings.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Cátions , Zinco/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Transporte de Íons , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo
4.
Chem Biodivers ; 19(12): e202200541, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36259377

RESUMO

Schinus essential oils were tentatively identified by GC×GC/TOFMS, which revealed a greater number of compounds than previously reported. Eighty-six, seventy-two, and eighty-eight components were identified in Schinus lentiscifolius, Schinus molle and Schinus terebinthifolius essential oils, respectively. Compound separation due to 2 D selectivity was observed. Phytotoxic effects of Schinus essential oils were assessed on germination and initial growth of Arabidopsis thaliana. All essential oils in all tested quantities (5 µL, 10 µL, 15 µL, 20 µL, and 25 µL) affected germination rate, speed of accumulated germination, and root and shoot length of A. thaliana. Considering the mode of action of the essential oils, no differences were observed on expression of the genes ANP1 and CDK B1;1 in A. thaliana, which was analyzed by RT-qPCR. Results suggest that phytotoxic effects of Schinus essential oils seem to be explained by cellular damage rather than by induction of stress-inducible genes.


Assuntos
Alcaloides , Anacardiaceae , Arabidopsis , Óleos Voláteis , Óleos Voláteis/toxicidade , Óleos Voláteis/química , Schinus , Anacardiaceae/química
5.
Environ Sci Pollut Res Int ; 29(55): 82844-82854, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35759094

RESUMO

High soil copper (Cu) concentrations in vineyards can cause phytotoxicity to grapevine rootstocks. In order to mitigate toxicity, the use of grapevine rootstock genetic variation and the application of amendments are possible strategies. The aim of this study is to assess the tolerance of grapevine rootstocks to Cu excess and whether phosphorus (P) and calcium (Ca) can reduce phytotoxicity caused by Cu. Grapevine rootstock seedlings were produced from selected stakes: Paulsen 1103 (Vitis berlandieri × Vitis rupestris); SO4 (Vitis berlandieri × Vitis riparia); IAC 572 ((Vitis Riparia × Vitis rupestris) × Vitis caribaea); and Isabel (Vitis labrusca). Seedlings were grown in nutrition solution added with the following treatments: 0.3 µM Cu (control); 60 µM Cu; 60 µM Cu and 62 mg L-1 P; 60 µM Cu and 400 mg L-1 Ca. High Cu concentration caused phytotoxicity in all rootstocks, impairing their growth and decreasing nutrient concentration and photosynthetic activity. P and Ca addition had positive effect on the photosynthetic activity of all rootstocks, although it was not enough to revert growth to levels comparable with controls. Overall, based on the results, the application of P and Ca was not efficient in mitigating Cu phytotoxicity in grapevine plants grown in solution. Isabel was the most sensitive rootstock to Cu phytotoxicity, whereas Paulsen 1103 and SO4 presented more tolerance and can be used, together with other management strategies, in contaminated vineyard areas. Therefore, careful genotype rootstock selection for use in high Cu soils is important, while Ca and P are not efficient mitigators of Cu toxicity.


Assuntos
Cobre , Vitis , Fósforo , Cálcio , Solo , Raízes de Plantas
6.
Environ Pollut ; 292(Pt B): 118420, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743967

RESUMO

Plastic pollution is one of the most impactful human interferences in our planet. Fragmentation of plastic leads to nano- and microplastics (NP/MP) formation, which accumulate in agricultural lands, representing an increasing risk for crop production and food safety. It has been shown that MP promote damage in plant tissues by several direct and indirect ways, and that NP can enter the tissues/cells and accumulate in edible organs. Investigation of the phytotoxic effects of NP/MP in plants started only in 2016, with most of the studies performed with crops. Since contradictory results are often observed, it is important to review the literature in order to identify robust effects and their possible mechanisms. In this review, we discuss the potential of NP/MP in damaging crop species, with focus on the physiological changes described in the literature. We also performed scientometrics analyses on research papers in this field during 2016-2021, to reveal the research situation of phytotoxic effects of plastic pollution in crops. Our review is as a starting point to help identify gaps and future directions in this important, emerging field.


Assuntos
Plásticos , Poluentes Químicos da Água , Agricultura , Produtos Agrícolas , Monitoramento Ambiental , Poluição Ambiental , Humanos , Microplásticos , Plásticos/toxicidade , Poluentes Químicos da Água/análise
8.
Front Plant Sci ; 12: 613568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643348

RESUMO

Cultivated rice (Oryza sativa L.) is frequently exposed to multiple stresses, including Schizotetranychus oryzae mite infestation. Rice domestication has narrowed the genetic diversity of the species, leading to a wide susceptibility. This work aimed to analyze the response of two African rice species (Oryza barthii and Oryza glaberrima), weedy rice (O. sativa f. spontanea), and O. sativa cv. Nipponbare to S. oryzae infestation. Surprisingly, leaf damage, histochemistry, and chlorophyll concentration/fluorescence indicated that the African species present a higher level of leaf damage, increased accumulation of H2O2, and lower photosynthetic capacity when compared to O. sativa plants under infested conditions. Infestation decreased tiller number, except in Nipponbare, and caused the death of O. barthii and O. glaberrima plants during the reproductive stage. While infestation did not affect the weight of 1,000 grains in both O. sativa, the number of panicles per plant was affected only in O. sativa f. spontanea, and the percentage of full seeds per panicle and seed length were increased only in Nipponbare. Using proteomic analysis, we identified 195 differentially abundant proteins when comparing susceptible (O. barthii) and tolerant (Nipponbare) plants under control and infested conditions. O. barthii presents a less abundant antioxidant arsenal and is unable to modulate proteins involved in general metabolism and energy production under infested condition. Nipponbare presents high abundance of detoxification-related proteins, general metabolic processes, and energy production, suggesting that the primary metabolism is maintained more active compared to O. barthii under infested condition. Also, under infested conditions, Nipponbare presents higher levels of proline and a greater abundance of defense-related proteins, such as osmotin, ricin B-like lectin, and protease inhibitors (PIs). These differentially abundant proteins can be used as biotechnological tools in breeding programs aiming at increased tolerance to mite infestation.

9.
J Exp Bot ; 72(6): 2242-2259, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33035327

RESUMO

Iron (Fe) toxicity is one of the most common mineral disorders affecting rice (Oryza sativa) production in flooded lowland fields. Oryza meridionalis is indigenous to northern Australia and grows in regions with Fe-rich soils, making it a candidate for use in adaptive breeding. With the aim of understanding tolerance mechanisms in rice, we screened a population of interspecific introgression lines from a cross between O. sativa and O. meridionalis for the identification of quantitative trait loci (QTLs) contributing to Fe-toxicity tolerance. Six putative QTLs were identified. A line carrying one introgression from O. meridionalis on chromosome 9 associated with one QTL was highly tolerant despite very high shoot Fe concentrations. Physiological, biochemical, ionomic, and transcriptomic analyses showed that the tolerance of the introgression lines could partly be explained by higher relative Fe retention in the leaf sheath and culm. We constructed the interspecific hybrid genome in silico for transcriptomic analysis and identified differentially regulated introgressed genes from O. meridionalis that could be involved in shoot-based Fe tolerance, such as metallothioneins, glutathione S-transferases, and transporters from the ABC and MFS families. This work demonstrates that introgressions of O. meridionalis into the O. sativa genome can confer increased tolerance to excess Fe.


Assuntos
Oryza , Austrália , Ferro , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética
10.
Plant Physiol Biochem ; 158: 113-124, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33307423

RESUMO

Copper (Cu) is an essential element for plants, especially in photosynthesis, as it is required for plastocyanin function in electron transfer reactions at thylakoid membranes. In Arabidopsis thaliana, Cu deficiency leads to the Cu economy response, in which plants prioritize Cu usage by plastocyanin in detriment of non-essential cupric proteins. In rice (Oryza sativa), however, this response has not been characterized. Rice OsHMA5 is a Cu xylem-loading transporter involved in Cu translocation from roots to shoots, as suggested by the analysis of oshma5 mutant plants. Aiming to understand how rice plants respond to Cu deficiency and how decreased Cu translocation to shoots can affect this response, we characterized the physiological and molecular responses of WT and oshma5 plants under control and Cu deficiency treatments. We found evidence that shoots of oshma5 plants are more prone to Cu deficiency compared to shoots of WT plants, as demonstrated by decreased chlorophyll and Cu concentrations, and electron transport rate. Gene expression analysis revealed that Cu high-affinity transporters OsCOPT1 and OsCOPT5, along with a set of miRNAs and three Cu/Zn superoxide dismutases are responsive to Cu deficiency in both WT and oshma5 plants, suggesting their involvement in the Cu economy response. However, Fe superoxide dismutase was not up-regulated in rice, indicating a difference compared to the A. thaliana Cu economy model. Therefore, we provide evidence for a partially conserved Cu economy response in rice, in comparison to A. thaliana.


Assuntos
Cobre/fisiologia , Oryza/fisiologia , Proteínas de Plantas/fisiologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas
11.
J Plant Physiol ; 255: 153307, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33142180

RESUMO

Rice (Oryza sativa L.) ssp. indica is the most cultivated species in the South of Brazil. However, these plants face low temperature stress from September to November, which is the period of early sowing, affecting plant development during the initial stages of growth, and reducing rice productivity. This study aimed to characterize the root response to low temperature stress during the early vegetative stage of two rice genotypes contrasting in their cold tolerance (CT, cold-tolerant; and CS, cold-sensitive). Root dry weight and length, as well as the number of root hairs, were higher in CT than CS when exposed to cold treatment. Histochemical analyses indicated that roots of CS genotype present higher levels of lipid peroxidation and H2O2 accumulation, along with lower levels of plasma membrane integrity than CT under low temperature stress. RNAseq analyses revealed that the contrasting genotypes present completely different molecular responses to cold stress. The number of over-represented functional categories was lower in CT than CS under cold condition, suggesting that CS genotype is more impacted by low temperature stress than CT. Several genes might contribute to rice cold tolerance, including the ones related with cell wall remodeling, cytoskeleton and growth, signaling, antioxidant system, lipid metabolism, and stress response. On the other hand, high expression of the genes SRC2 (defense), root architecture associated 1 (growth), ACC oxidase, ethylene-responsive transcription factor, and cytokinin-O-glucosyltransferase 2 (hormone-related) seems to be related with cold sensibility. Since these two genotypes have a similar genetic background (sister lines), the differentially expressed genes found here can be considered candidate genes for cold tolerance and could be used in future biotechnological approaches aiming to increase rice tolerance to low temperature.


Assuntos
Aclimatação/genética , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Oryza/genética , Oryza/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Aclimatação/fisiologia , Brasil , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo
12.
Physiol Mol Biol Plants ; 26(7): 1349-1359, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32647453

RESUMO

Rice is a daily staple for half of the world's population. However, rice grains are poor in micronutrients such as Fe and Zn, the two most commonly deficient minerals in the human diet. In plants, Fe and Zn must be absorbed from the soil, distributed and stored, so that their concentrations are maintained at sufficient but non-toxic levels. The understanding of mechanisms of Fe and Zn homeostasis in plants has the potential to benefit agriculture, improving the use of micronutrients by plants, as well as to indicate approaches that aim at biofortification of the grains. ZIP transporters are commonly associated with Zn uptake, but there are few reports about their physiological relevance in planta. Here we describe a Tos17 loss-of-function line for the Zn plasma membrane transporter OsZIP7 (oszip7). We showed that the absence of functional OsZIP7 leads to deregulated Zn partitioning, increasing Zn accumulation in roots but decreasing in shoots and seeds. We also demonstrated that, upon Zn deficiency, oszip7 plants slightly increase their photosynthetic performance, suggesting that these plants might be primed for Zn deficiency which makes them more tolerant. On the other hand, we found that Zn excess is more deleterious to oszip7 plants compared to wild type, which may be linked to secondary effects in concentrations of other elements such as Fe. Our data suggest that OsZIP7 is important for Zn homeostasis under physiological Zn concentrations, and that Fe homeostasis might be affected due to loss of function of OsZIP7.

14.
Planta ; 251(5): 94, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32253515

RESUMO

MAIN CONCLUSION: The MIR gene is not an Oryza sativa orphan gene, but an Oryza genus-specific gene that evolved before AA lineage speciation by a complex origination process. Rice (Oryza sativa L.) is a model species and an economically relevant crop. The Oryza genus comprises 25 species, with genomic data available for several Oryza species, making it a model for genetics and evolution. The Mitochondrial Iron-Regulated (MIR) gene was previously implicated in the O. sativa Fe deficiency response, and was considered an orphan gene present only in rice. Here we show that MIR is also found in other Oryza species that belong to the Oryza sativa complex, which have AA genome type and constitute the primary gene pool for O. sativa breeding. Our data suggest that MIR originated in a stepwise process, in which sequences derived from an exon fragment of the raffinose synthase gene were pseudogenized into non-coding, which in turn originated the MIR gene de novo. All species with a putative functional MIR gene conserve their regulation by Fe deficiency, with the exception of Oryza barthii. In O. barthii, the MIR coding sequence was translocated to a different chromosomal position and separated from its regulatory region, leading to a lack of Fe deficiency responsiveness. Moreover, the MIR co-expression subnetwork cluster in O. sativa is responsive to Fe deficiency, evidencing the importance of the newly originated gene in Fe uptake. This work establishes that MIR is not an orphan gene as previously proposed, but a de novo originated gene within the genus Oryza. We also showed that MIR is undergoing genomic changes in one species (O. barthii), with an impact on Fe deficiency response.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Ferro/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Produtos Agrícolas , Deficiências de Ferro , Mitocôndrias/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Especificidade da Espécie
15.
Sci Rep ; 9(1): 16144, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695138

RESUMO

Iron (Fe) is an essential micronutrient that is frequently inaccessible to plants. Rice (Oryza sativa L.) plants employ the Combined Strategy for Fe uptake, which is composed by all features of Strategy II, common to all Poaceae species, and some features of Strategy I, common to non-Poaceae species. To understand the evolution of Fe uptake mechanisms, we analyzed the root transcriptomic response to Fe deficiency in O. sativa and its wild progenitor O. rufipogon. We identified 622 and 2,017 differentially expressed genes in O. sativa and O. rufipogon, respectively. Among the genes up-regulated in both species, we found Fe transporters associated with Strategy I, such as IRT1, IRT2 and NRAMP1; and genes associated with Strategy II, such as YSL15 and IRO2. In order to evaluate the conservation of these Strategies among other Poaceae, we identified the orthologs of these genes in nine species from the Oryza genus, maize and sorghum, and evaluated their expression profile in response to low Fe condition. Our results indicate that the Combined Strategy is not specific to O. sativa as previously proposed, but also present in species of the Oryza genus closely related to domesticated rice, and originated around the same time the AA genome lineage within Oryza diversified. Therefore, adaptation to Fe2+ acquisition via IRT1 in flooded soils precedes O. sativa domestication.


Assuntos
Produtos Agrícolas/metabolismo , Oryza/metabolismo , Transporte Biológico/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Ferro/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Especificidade da Espécie , Transcriptoma , Zea mays/genética , Zea mays/metabolismo
17.
Front Plant Sci ; 10: 746, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244872

RESUMO

Iron (Fe) is an essential element to plants, but can be harmful if accumulated to toxic concentrations. Fe toxicity can be a major nutritional disorder in rice (Oryza sativa) when cultivated under waterlogged conditions, as a result of excessive Fe solubilization of in the soil. However, little is known about the basis of Fe toxicity and tolerance at both physiological and molecular level. To identify mechanisms and potential candidate genes for Fe tolerance in rice, we comparatively analyzed the effects of excess Fe on two cultivars with distinct tolerance to Fe toxicity, EPAGRI 108 (tolerant) and BR-IRGA 409 (susceptible). After excess Fe treatment, BR-IRGA 409 plants showed reduced biomass and photosynthetic parameters, compared to EPAGRI 108. EPAGRI 108 plants accumulated lower amounts of Fe in both shoots and roots compared to BR-IRGA 409. We conducted transcriptomic analyses of roots from susceptible and tolerant plants under control and excess Fe conditions. We found 423 up-regulated and 92 down-regulated genes in the susceptible cultivar, and 42 up-regulated and 305 down-regulated genes in the tolerant one. We observed striking differences in root gene expression profiles following exposure to excess Fe: the two cultivars showed no genes regulated in the same way (up or down in both), and 264 genes were oppositely regulated in both cultivars. Plants from the susceptible cultivar showed down-regulation of known Fe uptake-related genes, indicating that plants are actively decreasing Fe acquisition. On the other hand, plants from the tolerant cultivar showed up-regulation of genes involved in root cell wall biosynthesis and lignification. We confirmed that the tolerant cultivar has increased lignification in the outer layers of the cortex and in the vascular bundle compared to the susceptible cultivar, suggesting that the capacity to avoid excessive Fe uptake could rely in root cell wall remodeling. Moreover, we showed that increased lignin concentrations in roots might be linked to Fe tolerance in other rice cultivars, suggesting that a similar mechanism might operate in multiple genotypes. Our results indicate that changes in root cell wall and Fe permeability might be related to Fe toxicity tolerance in rice natural variation.

18.
Front Plant Sci ; 9: 1341, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279693

RESUMO

Rice is the staple food for over half of the world's population. Infestation of Schizotetranychus oryzae (Acari: Tetranychidae) causes great losses in rice productivity. To search for rice genotypes that could better tolerate S. oryzae infestation, we evaluated morphological and production parameters in Brazilian cultivars, and identified two cultivars with contrasting responses. Leaf damage during infestation was similar for all cultivars. However, infestation in Puitá INTA-CL resulted in reduction in the number of seeds per plant, percentage of full seeds, weight of 1,000 seeds, and seed length, whereas infestation in IRGA 423 increased weight of 1,000 seeds and seed length. Reduction in seed weight per plant caused by infestation was clearly higher in Puitá INTA-CL (62%) compared to IRGA 423 (no reduction detected), thus Puitá INTA-CL was established as susceptible, and IRGA 423 as tolerant to S. oryzae infestation. Photosynthetic parameters were less affected by infestation in IRGA 423 than in Puitá INTA-CL, evidencing higher efficiency of energy absorption and use. S. oryzae infestation also caused accumulation of H2O2, decreased cell membrane integrity (indicative of cell death), and accelerated senescence in leaves of Puitá INTA-CL, while leaves of IRGA 423 presented higher levels of total phenolics compounds. We performed proteomics analysis of Puitá INTA-CL and IRGA 423 leaves after 7 days of infestation, and identified 60 differentially abundant proteins (28 more abundant in leaves of Puitá INTA-CL and 32 in IRGA 423). Proteins related to plant defense, such as jasmonate synthesis, and related to other mechanisms of tolerance such as oxidative stress, photosynthesis, and DNA structure maintenance, together with energy production and general metabolic processes, were more abundant in IRGA 423. We also detected higher levels of silicon (as amorphous silica cells) in leaves of infested IRGA 423 plants compared to Puitá INTA-CL, an element previously linked to plant defense, indicating that it could be involved in tolerance mechanisms. Taken together, our data show that IRGA 423 presents tolerance to S. oryzae infestation, and that multiple mechanisms might be employed by this cultivar. These findings could be used in biotechnological approaches aiming to increase rice tolerance to mite infestation.

19.
Ci. Rural ; 48(4): 1-8, Apr. 2018. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-18623

RESUMO

Soils which are cultivated with grapevines have high available copper (Cu) content, which can be toxic to cover crops cohabiting vineyards, such as black oats. This study aimed to assess the effect of liming in reducing Cu toxicity in black oats grown in sandy soils. Samples of a Typic Hapludalf were collected at 0-20cm, dried and subjected to the addition of Cu (0 to 50Mg kg-1) and limestone (0, 1.5, and 3.0Mg ha-1). The soil was placed in a rhizobox and black oats were grown for 30 days. We assessed root and shoot dry matter production, copper (Cu), calcium (Ca) and magnesium (Mg) contents in the tissues; Cu content in the root symplast and apoplast, as well as Cu, carbon and pH values in the rhizosphere and bulk soil. Liming reduced Cu toxicity in black oats. Cu was preferentially accumulated in the roots, mostly in the apoplast, which may be the result of a plant tolerance mechanism to prevent the transport of Cu to the shoots.(AU)


Solos cultivados com videiras possuem alto teor de cobre (Cu) disponível, que pode ser tóxico às plantas de cobertura do solo que coabitam vinhedos, como a aveia preta. O estudo objetivou avaliar o efeito da calagem na redução da toxidez por Cu em plantas de aveia preta cultivadas em solo arenoso. Amostras de um Argissolo Vermelho foram coletadas na camada de 0-20cm, secas e submetidas à adição de duas doses de Cu (0 e 50Mg kg-1) e três de calcário (0, 1,5 e 3,0Mg ha-1). O solo foi acondicionado em rhizobox e submetido ao cultivo de aveia preta durante 30 dias. Avaliaram-se a produção de matéria seca das raízes e da parte aérea, o teor de cobre (Cu), cálcio (Ca) e magnésio (Mg) nos tecidos; o teor de Cu no simplasto e apoplasto das raízes, e os teores de Cu, de carbono e valores de pH no solo rizosférico e não rizosférico. A aplicação de calcário reduziu a toxidez por Cu na aveia preta. O Cu foi preferencialmente acumulado nas raízes, especialmente no apoplasto, o que pode ser resultado de mecanismo de tolerância das plantas para evitar o transporte de parte do elemento para a parte aérea.(AU)


Assuntos
Poluentes do Solo/toxicidade , Metais Pesados/toxicidade , Carbonato de Cálcio , Rizosfera , Avena , 24444
20.
Plant Cell Rep ; 37(2): 347-375, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29151156

RESUMO

KEY MESSAGE: Cold-tolerance in rice may be related to increased cellulose deposition in the cell wall, membrane fatty acids unsaturation and differential expression of several newly identified genes. Low temperature exposure during early vegetative stages limits rice plant's growth and development. Most genes previously related to cold tolerance in rice are from the japonica subspecies. To help clarify the mechanisms that regulate cold tolerance in young indica rice plants, comparative transcriptome analysis of 6 h cold-treated (10 °C) leaves from two genotypes, cold-tolerant (CT) and cold-sensitive (CS), was performed. Differentially expressed genes were identified: 831 and 357 sequences more expressed in the tolerant and in the sensitive genotype, respectively. The genes with higher expression in the CT genotype were used in systems biology analyses to identify protein-protein interaction (PPI) networks and nodes (proteins) that are hubs and bottlenecks in the PPI. From the genes more expressed in the tolerant plants, 60% were reported as affected by cold in previous transcriptome experiments and 27% are located within QTLs related to cold tolerance during the vegetative stage. Novel cold-responsive genes were identified. Quantitative RT-PCR confirmed the high-quality of RNAseq libraries. Several genes related to cell wall assembly or reinforcement are cold-induced or constitutively highly expressed in the tolerant genotype. Cold-tolerant plants have increased cellulose deposition under cold. Genes related to lipid metabolism are more expressed in the tolerant genotype, which has higher membrane fatty acids unsaturation, with increasing levels of linoleic acid under cold. The CT genotype seems to have higher photosynthetic efficiency and antioxidant capacity, as well as more effective ethylene, Ca2+ and hormone signaling than the CS. These genes could be useful in future biotechnological approaches aiming to increase cold tolerance in rice.


Assuntos
Adaptação Fisiológica/genética , Temperatura Baixa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oryza/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genótipo , Oryza/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas/genética , Locos de Características Quantitativas/genética , Plântula/genética , Plântula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA