Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 324: 111421, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35995111

RESUMO

Gravitropism is a finely regulated tropistic response based on the plant perception of directional cues. Such perception allows them to direct shoot growth upwards, above ground, and root growth downwards, into the soil, anchoring the plant to acquire water and nutrients. Gravity sensing occurs in specialized cells and depends on auxin distribution, regulated by influx/efflux carriers. Here we report that AtHB40, encoding a transcription factor of the homeodomain-leucine zipper I family, was expressed in the columella and the root tip. Athb40 mutants exhibited longer primary roots. Enhanced primary root elongation was in agreement with a higher number of cells in the transition zone and the induction of CYCLINB transcript levels. Moreover, athb40 mutants and AtHB40 overexpressors displayed enhanced and delayed gravitropistic responses, respectively. These phenotypes were associated with altered auxin distribution and deregulated expression of the auxin transporters LAX2, LAX3, and PIN2. Accordingly, lax2 and lax3 mutants also showed an altered gravitropistic response, and LAX3 was identified as a direct target of AtHB40. Furthermore, AtHB40 is induced by AtHB53 when the latter is upregulated by auxin. Altogether, these results indicate that AtHB40 modulates cell division and auxin distribution in the root tip thus altering primary root length and gravitropism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Gravitropismo/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Solo , Fatores de Transcrição/metabolismo , Água/metabolismo
2.
IUBMB Life ; 69(5): 280-289, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28337836

RESUMO

In front of stressful conditions plants display adaptation mechanisms leading to changes in their morphology, physiology, development and molecular composition. Transcription factors (TFs) play crucial roles in these complex adaptation processes. This work is focused in the homeodomain-leucine zipper I (HD-Zip I) family of TFs, unique to plants. First discovered in 1991, they were identified and isolated from monocotyledonous and dicotyledonous plants showing high structural similarity and diversified functions. These TFs have, besides the homeodomain and leucine zipper, conserved motifs in their carboxy-termini allowing the interaction with the basal machinery and with other regulatory proteins. The model dicotyledonous plant Arabidopsis thaliana has 17 HD-Zip I members; most of them regulated by external stimuli and hormones. These TFs are involved in key developmental processes like root and stem elongation, rosette leaves morphology determination, inflorescence stem branching, flowering and pollen hydration. Moreover, they are key players in responses to environmental stresses and illumination conditions. Several HD-Zip I encoding genes from different species were protected in patents because their overexpression or mutation generates improved agronomical phenotypes. Here we discuss many aspects about these TFs including structural features, biological functions and their utilization as biotechnological tools to improve crops. © 2017 IUBMB Life, 69(5):280-289, 2017.


Assuntos
Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Biotecnologia/métodos , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Zíper de Leucina , Família Multigênica , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA