Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(1): 1-14.e4, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36446352

RESUMO

Re-entrant connections are inherent to nervous system organization; however, a comprehensive understanding of their operation is still lacking. In birds, topographically organized re-entrant signals, carried by axons from the nucleus-isthmi-parvocellularis (Ipc), are distinctly recorded as bursting discharges across the optic tectum (TeO). Here, we used up to 48 microelectrodes regularly spaced on the superficial tectal layers of anesthetized pigeons to characterize the spatial-temporal pattern of this axonal re-entrant activity in response to different visual stimulation. We found that a brief luminous spot triggered repetitive waves of bursting discharges that, appearing from initial sources, propagated horizontally to areas representing up to 28° of visual space, widely exceeding the area activated by the retinal fibers. In response to visual motion, successive burst waves started along and around the stimulated tectal path, tracking the stimulus in discontinuous steps. When two stimuli were presented, the burst-wave sources alternated between the activated tectal loci, as if only one source could be active at any given time. Because these re-entrant signals boost the retinal input to higher visual areas, their peculiar dynamics mimic a blinking "spotlight," similar to the internal searching mechanism classically used to explain spatial attention. Tectal re-entry from Ipc is thus highly structured and intrinsically discontinuous, and higher tectofugal areas, which lack retinotopic organization, will thus receive incoming visual activity in a sequential and piecemeal fashion. We anticipate that analogous re-entrant patterns, perhaps hidden in less bi-dimensionally organized topographies, may organize the flow of neural activity in other parts of the brain as well.


Assuntos
Piscadela , Vias Visuais , Animais , Vias Visuais/fisiologia , Teto do Mesencéfalo , Colículos Superiores/fisiologia , Columbidae/fisiologia
2.
Neuroscience ; 426: 13-32, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785354

RESUMO

Neurons from several brain regions resonate in the theta frequency range (4-12 Hz), displaying a higher voltage response to oscillatory currents at a preferred 'resonant' frequency (fR). Subthreshold resonance could influence spiking and contribute to the selective entrainment of neurons during the network oscillatory activity that accompanies several cognitive processes. Neurons from different regions display resonance in specific theta subranges, suggesting a functional specialization. Further experimental work is needed to characterize this diversity and explore how frequency preference could be dynamically modulated. Theoretical studies have shown that the fine-tuning of resonance depends in a complex way on a variety of intrinsic factors and input properties, but their specific influence is difficult to dissect in cells. We performed slice electrophysiology, dynamic clamping and modelling to assess the differential frequency preference of rat entorhinal stellate neurons, hippocampal CA1 pyramidal neurons and cortical amygdala neurons, which share a hyperpolarization-activated current (Ih)-dependent resonance mechanism. We found heterogeneous resonance properties among the different types of theta-resonant neurons, as well as in each specific group. In all the neurons studied, fR inversely correlated with the effective input resistance (Rin), a measurable variable that depends on passive and active membrane features. We showed that resonance can be adjusted by manipulations mimicking naturally occurring processes, as the incorporation of a virtual constant conductance or cell depolarization, in a way that preserves the fR-Rin relationship. The modulation of frequency selectivity influences firing by shifting spike frequency and timing, which could influence neuronal communication in an active network.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Potenciais da Membrana/fisiologia , Células Piramidais/fisiologia , Animais , Fenômenos Eletrofisiológicos/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Modelos Neurológicos , Células Piramidais/efeitos dos fármacos , Ratos Sprague-Dawley , Ritmo Teta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA