Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7880, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251599

RESUMO

Progressive supranuclear palsy (PSP), a rare Parkinsonian disorder, is characterized by problems with movement, balance, and cognition. PSP differs from Alzheimer's disease (AD) and other diseases, displaying abnormal microtubule-associated protein tau by both neuronal and glial cell pathologies. Genetic contributors may mediate these differences; however, the genetics of PSP remain underexplored. Here we conduct the largest genome-wide association study (GWAS) of PSP which includes 2779 cases (2595 neuropathologically-confirmed) and 5584 controls and identify six independent PSP susceptibility loci with genome-wide significant (P < 5 × 10-8) associations, including five known (MAPT, MOBP, STX6, RUNX2, SLCO1A2) and one novel locus (C4A). Integration with cell type-specific epigenomic annotations reveal an oligodendrocytic signature that might distinguish PSP from AD and Parkinson's disease in subsequent studies. Candidate PSP risk gene prioritization using expression quantitative trait loci (eQTLs) identifies oligodendrocyte-specific effects on gene expression in half of the genome-wide significant loci, and an association with C4A expression in brain tissue, which may be driven by increased C4A copy number. Finally, histological studies demonstrate tau aggregates in oligodendrocytes that colocalize with C4 (complement) deposition. Integrating GWAS with functional studies, epigenomic and eQTL analyses, we identify potential causal roles for variation in MOBP, STX6, RUNX2, SLCO1A2, and C4A in PSP pathogenesis.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Paralisia Supranuclear Progressiva , Proteínas tau , Humanos , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/metabolismo , Idoso , Masculino , Feminino , Proteínas tau/genética , Proteínas tau/metabolismo , Transcriptoma , Polimorfismo de Nucleotídeo Único , Neuroglia/metabolismo , Neuroglia/patologia , Idoso de 80 Anos ou mais , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Pessoa de Meia-Idade , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Estudos de Casos e Controles , Proteínas da Mielina
2.
Acta Neuropathol Commun ; 12(1): 135, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154163

RESUMO

Progressive supranuclear palsy (PSP) is a neurodegenerative movement and cognitive disorder characterized by abnormal accumulation of the microtubule-associated protein tau in the brain. Biochemically, inclusions in PSP are enriched for tau proteoforms with four microtubule-binding domain repeats (4R), an isoform that arises from alternative tau pre-mRNA splicing. While preferential aggregation and reduced degradation of 4R tau protein is thought to play a role in inclusion formation and toxicity, an alternative hypothesis is that altered expression of tau mRNA isoforms plays a causal role. This stems from the observation that PSP is associated with common variation in the tau gene (MAPT) at the 17q21.31 locus which contains low copy number repeats flanking a large recurrent genomic inversion. The complex genomic structural changes at the locus give rise to two dominant haplotypes, termed H1 and H2, that have the potential to markedly influence gene expression. Here, we explored haplotype-dependent differences in gene expression using a bulk RNA-seq dataset derived from human post-mortem brain tissue from PSP (n = 84) and controls (n = 77) using a rigorous computational pipeline, including alternative pre-mRNA splicing. We found 3579 differentially expressed genes in the temporal cortex and 10,011 in the cerebellum. We also found 7214 differential splicing events in the temporal cortex and 18,802 in the cerebellum. In the cerebellum, total tau mRNA levels and the proportion of transcripts encoding 4R tau were significantly increased in PSP compared to controls. In the temporal cortex, the proportion of reads that expressed 4R tau was increased in cases compared to controls. 4R tau mRNA levels were significantly associated with the H1 haplotype in the temporal cortex. Further, we observed a marked haplotype-dependent difference in KANSL1 expression that was strongly associated with H1 in both brain regions. These findings support the hypothesis that sporadic PSP is associated with haplotype-dependent increases in 4R tau mRNA that might play a causal role in this disorder.


Assuntos
Haplótipos , Paralisia Supranuclear Progressiva , Transcriptoma , Proteínas tau , Humanos , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Idoso , Masculino , Feminino , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Pessoa de Meia-Idade
3.
Clin Neurol Neurosurg ; 238: 108191, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422744

RESUMO

OBJECTIVE: The objective of this study was to examine survival outcomes in 136 patients with renal cell carcinoma with metastases to the brain who were treated with radiation combined with immunotherapy or tyrosine kinase inhibitor compared to those who were treated with radiation therapy alone. METHODS: The Wake Forest Gamma Knife prospective database was searched for all patients with renal cell carcinoma brain metastases. Outcome measurements included overall survival, determined via the Kaplan-Meier Method, and cumulative incidence of local and distant failure, determined using the Fine Gray competing risks analysis with death as a competing risk for the 136 patients included. RESULTS: Overall survival for the entire population at 6 months, 12 months, and 24 months was 67%, 47% and 30%, respectively. For the TKI (non-immunotherapy-treated) population (n = 37), overall survival was 75%, 61%, and 40% at 6 months, 12 months, and 24 months, respectively. For the immunotherapy-treated population (n = 35), overall survival was 85%, 64%, and 50% at 6 months, 12 months, and 24 months, respectively. Overall survival was significantly increased for patients who received radiation with either immunotherapy or TKI (p < 0.0001). CONCLUSION: Prior series of patients with brain metastases of multiple histologies have demonstrated an improvement in the local efficacy of stereotactic radiosurgery when combined with systemic agents. We found that patients treated with targeted agents and patients treated with immunotherapy demonstrated a trend towards improvement over patients treated in the era prior to the advent of either classes of novel therapies.


Assuntos
Neoplasias Encefálicas , Carcinoma de Células Renais , Neoplasias Renais , Radiocirurgia , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Estudos Retrospectivos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Imunoterapia , Radiocirurgia/métodos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia
5.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014079

RESUMO

Progressive supranuclear palsy (PSP) is a sporadic neurodegenerative tauopathy variably affecting brainstem and cortical structures and characterized by tau inclusions in neurons and glia. The precise mechanism whereby these protein aggregates lead to cell death remains unclear. To investigate the contribution of these different cellular abnormalities to PSP pathogenesis, we performed single-nucleus RNA sequencing and analyzed 45,559 high quality nuclei targeting the subthalamic nucleus and adjacent structures from human post-mortem PSP brains with varying degrees of pathology compared to controls. Cell-type specific differential expression and pathway analysis identified both common and discrete changes in numerous pathways previously implicated in PSP and other neurodegenerative disorders. This included EIF2 signaling, an adaptive pathway activated in response to diverse stressors, which was the top activated pathway in vulnerable cell types. Using immunohistochemistry, we found that activated eIF2α was positively correlated with tau pathology burden in vulnerable brain regions. Multiplex immunofluorescence localized activated eIF2α positivity to hyperphosphorylated tau (p-tau) positive neurons and ALDH1L1-positive astrocytes, supporting the increased transcriptomic EIF2 activation observed in these vulnerable cell types. In conclusion, these data provide insights into cell-type-specific pathological changes in PSP and support the hypothesis that failure of adaptive stress pathways play a mechanistic role in the pathogenesis and progression of PSP.

6.
Free Neuropathol ; 32022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37284166

RESUMO

Perfusion fixation is a well-established technique in animal research to improve preservation quality in the study of many tissues, including the brain. There is a growing interest in using perfusion to fix postmortem human brain tissue to achieve the highest fidelity preservation for downstream high-resolution morphomolecular brain mapping studies. Numerous practical barriers arise when applying perfusion fixation in brain banking settings, including the large mass of the organ, degradation of vascular integrity and patency prior to the start of the procedure, and differing investigator goals sometimes necessitating part of the brain to be frozen. As a result, there is a critical need to establish a perfusion fixation procedure in brain banking that is flexible and scalable. This technical report describes our approach to developing an ex situ perfusion fixation protocol. We discuss the challenges encountered and lessons learned while implementing this procedure. Routine morphological staining and RNA in situ hybridization data show that the perfused brains have well-preserved tissue cytoarchitecture and intact biomolecular signal. However, it remains uncertain whether this procedure leads to improved histology quality compared to immersion fixation. Additionally, ex vivo magnetic resonance imaging (MRI) data suggest that the perfusion fixation protocol may introduce imaging artifacts in the form of air bubbles in the vasculature. We conclude with further research directions to investigate the use of perfusion fixation as a rigorous and reproducible alternative to immersion fixation for the preparation of postmortem human brains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA