Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 106: 103191, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35636879

RESUMO

Anxiety resulting from psychogenic stimuli elicit stress-induced hyperthermia in rats, often called "psychogenic fever", which is part of a coordinated response to situations seen as novel or distressing. Brain transient receptor potential vanilloid 1 (TRPV1) channels modulate both thermoregulation and animal behavior; however, the role of peripheral TRPV1 channels in regulating these responses during exposure to an anxiogenic environment has not been determined. Thus, the present study aimed to investigate the involvement of abdominal TRPV1 channels in stress-induced hyperthermia and behavior in rats subjected to an unconditioned anxiety test. Desensitized rats (peripheral desensitization of TRPV1 channels with resiniferatoxin; RTX) and their respective controls were subjected to a 15-min open field (OF) test. The core body temperature (Tcore), tail skin temperature (Tskin), and rats' movements inside the arena were recorded. The OF test induced a similar increase in Tcore in both groups throughout the exposure time; however, at the recovery period, the RTX-treated rats had a slower reduction in Tcore due to lower tail skin heat loss. Tskin decreased significantly in both groups during exposure to OF but, during recovery, the RTX-treated rats showed impaired skin vasodilation. Also, RTX-treated rats entered fewer times and spent less time in the OF center square, suggesting an anxiety-related behavior. Our findings indicate that, under stressful conditions, peripheral TRPV1 channels modulate thermoregulatory and behavioral responses. The TRPV1 desensitization induces a more prolonged hyperthermic response due to lower cutaneous heat dissipation, alongside a more evident anxiety-like behavior in rats subjected to the OF apparatus.


Assuntos
Hipertermia Induzida , Canais de Potencial de Receptor Transitório , Animais , Regulação da Temperatura Corporal/fisiologia , Ratos , Canais de Cátion TRPV/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA