RESUMO
We study a restricted solid-on-solid model involving deposition and evaporation with probabilities p and 1 - p, respectively, in one-dimensional substrates. It presents a crossover from Edwards-Wilkinson (EW) to Kardar-Parisi-Zhang (KPZ) scaling for p approximately 0.5. The associated KPZ equation is analytically derived, exhibiting a coefficient lambda of the nonlinear term proportional to q identical with p - 1/2, which is confirmed numerically by calculation of tilt-dependent growth velocities for several values of p. This linear lambda - q relation contrasts to the apparently universal parabolic law obtained in competitive models mixing EW and KPZ components. The regions where the interface roughness shows pure EW and KPZ scaling are identified for 0.55< or =p< or =0.8, which provides numerical estimates of the crossover times tc. They scale as tc approximately lambda -phi with phi=4.1+/-0.1, which is in excellent agreement with the theoretically predicted universal value phi=4 and improves previous numerical estimates, which suggested phi approximately 3.
RESUMO
We present a numerical study of the self-affine profiles obtained from configurations of the q-state Potts (with q=2,3, and 7) and p=10 clock models as well as from the occupation states for site percolation on the square lattice. The first and second order static phase transitions of the Potts model are located by a sharp change in the value of the roughness exponent alpha characterizing those profiles. The low temperature phase of the Potts model corresponds to flat (alpha approximately 1) profiles, whereas its high temperature phase is associated with rough (alpha approximately 0.5) ones. For the p=10 clock model, in addition to the flat (ferromagnetic) and rough (paramagnetic) profiles, an intermediate rough (0.5
RESUMO
We use an exact recursion procedure to verify analytically, without any intermediary numerical calculation, the validity of the hyperscaling (Josephson) law extended to fractals, the Rushbrooke and Griffiths scaling laws for the Ising ferromagnet with external magnetic field in the whole family of Migdal-Kadanoff-like hierarchical lattices.