Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35327526

RESUMO

The immune function is closely related to iron (Fe) homeostasis and allostasis. The aim of this bioinformatics-assisted review was twofold; (i) to update the current knowledge of Fe metabolism and its relationship to the immune system, and (ii) to perform a prediction analysis of regulatory network hubs that might serve as potential biomarkers during stress-induced immunosuppression. Several literature and bioinformatics databases/repositories were utilized to review Fe metabolism and complement the molecular description of prioritized proteins. The Search Tool for the Retrieval of Interacting Genes (STRING) was used to build a protein-protein interactions network for subsequent network topology analysis. Importantly, Fe is a sensitive double-edged sword where two extremes of its nutritional status may have harmful effects on innate and adaptive immunity. We identified clearly connected important hubs that belong to two clusters: (i) presentation of peptide antigens to the immune system with the involvement of redox reactions of Fe, heme, and Fe trafficking/transport; and (ii) ubiquitination, endocytosis, and degradation processes of proteins related to Fe metabolism in immune cells (e.g., macrophages). The identified potential biomarkers were in agreement with the current experimental evidence, are included in several immunological/biomarkers databases, and/or are emerging genetic markers for different stressful conditions. Although further validation is warranted, this hybrid method (human-machine collaboration) to extract meaningful biological applications using available data in literature and bioinformatics tools should be highlighted.

2.
Nutrients ; 13(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34444681

RESUMO

Creatine (Cr) and phosphocreatine (PCr) are physiologically essential molecules for life, given they serve as rapid and localized support of energy- and mechanical-dependent processes. This evolutionary advantage is based on the action of creatine kinase (CK) isozymes that connect places of ATP synthesis with sites of ATP consumption (the CK/PCr system). Supplementation with creatine monohydrate (CrM) can enhance this system, resulting in well-known ergogenic effects and potential health or therapeutic benefits. In spite of our vast knowledge about these molecules, no integrative analysis of molecular mechanisms under a systems biology approach has been performed to date; thus, we aimed to perform for the first time a convergent functional genomics analysis to identify biological regulators mediating the effects of Cr supplementation in health and disease. A total of 35 differentially expressed genes were analyzed. We identified top-ranked pathways and biological processes mediating the effects of Cr supplementation. The impact of CrM on miRNAs merits more research. We also cautiously suggest two dose-response functional pathways (kinase- and ubiquitin-driven) for the regulation of the Cr uptake. Our functional enrichment analysis, the knowledge-based pathway reconstruction, and the identification of hub nodes provide meaningful information for future studies. This work contributes to a better understanding of the well-reported benefits of Cr in sports and its potential in health and disease conditions, although further clinical research is needed to validate the proposed mechanisms.


Assuntos
Creatina/administração & dosagem , Perfilação da Expressão Gênica , Genômica/métodos , Desempenho Físico Funcional , Animais , Creatina/metabolismo , Creatina Quinase/metabolismo , Suplementos Nutricionais , Metabolismo Energético , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno , Proteínas de Transporte de Neurotransmissores , Fosfocreatina/metabolismo , Transdução de Sinais
3.
Nutrients ; 13(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918657

RESUMO

Creatine (Cr) is a ubiquitous molecule that is synthesized mainly in the liver, kidneys, and pancreas. Most of the Cr pool is found in tissues with high-energy demands. Cr enters target cells through a specific symporter called Na+/Cl--dependent Cr transporter (CRT). Once within cells, creatine kinase (CK) catalyzes the reversible transphosphorylation reaction between [Mg2+:ATP4-]2- and Cr to produce phosphocreatine (PCr) and [Mg2+:ADP3-]-. We aimed to perform a comprehensive and bioinformatics-assisted review of the most recent research findings regarding Cr metabolism. Specifically, several public databases, repositories, and bioinformatics tools were utilized for this endeavor. Topics of biological complexity ranging from structural biology to cellular dynamics were addressed herein. In this sense, we sought to address certain pre-specified questions including: (i) What happens when creatine is transported into cells? (ii) How is the CK/PCr system involved in cellular bioenergetics? (iii) How is the CK/PCr system compartmentalized throughout the cell? (iv) What is the role of creatine amongst different tissues? and (v) What is the basis of creatine transport? Under the cellular allostasis paradigm, the CK/PCr system is physiologically essential for life (cell survival, growth, proliferation, differentiation, and migration/motility) by providing an evolutionary advantage for rapid, local, and temporal support of energy- and mechanical-dependent processes. Thus, we suggest the CK/PCr system acts as a dynamic biosensor based on chemo-mechanical energy transduction, which might explain why dysregulation in Cr metabolism contributes to a wide range of diseases besides the mitigating effect that Cr supplementation may have in some of these disease states.


Assuntos
Biologia Computacional , Creatina/metabolismo , Doença , Saúde , Animais , Transporte Biológico , Creatina/biossíntese , Creatina/química , Creatina Quinase/metabolismo , Humanos
4.
Nutrients ; 13(2)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578876

RESUMO

There is a robust and compelling body of evidence supporting the ergogenic and therapeutic role of creatine supplementation in muscle. Beyond these well-described effects and mechanisms, there is literature to suggest that creatine may also be beneficial to brain health (e.g., cognitive processing, brain function, and recovery from trauma). This is a growing field of research, and the purpose of this short review is to provide an update on the effects of creatine supplementation on brain health in humans. There is a potential for creatine supplementation to improve cognitive processing, especially in conditions characterized by brain creatine deficits, which could be induced by acute stressors (e.g., exercise, sleep deprivation) or chronic, pathologic conditions (e.g., creatine synthesis enzyme deficiencies, mild traumatic brain injury, aging, Alzheimer's disease, depression). Despite this, the optimal creatine protocol able to increase brain creatine levels is still to be determined. Similarly, supplementation studies concomitantly assessing brain creatine and cognitive function are needed. Collectively, data available are promising and future research in the area is warranted.


Assuntos
Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Creatina/administração & dosagem , Suplementos Nutricionais , Envelhecimento , Doença de Alzheimer/terapia , Barreira Hematoencefálica/metabolismo , Concussão Encefálica/terapia , Lesões Encefálicas/terapia , Creatina/metabolismo , Exercício Físico , Feminino , Nível de Saúde , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Substâncias para Melhoria do Desempenho/administração & dosagem , Substâncias para Melhoria do Desempenho/metabolismo
5.
Eur J Sport Sci ; 19(1): 1-14, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30086660

RESUMO

The ergogenic and therapeutic effects of increasing muscle creatine by supplementation are well-recognized. It appears that similar benefits to brain function and cognitive processing may also be achieved with creatine supplementation, however research in this area is more limited, and important knowledge gaps remain. The purpose of this review is to provide a comprehensive overview of the current state of knowledge about the influence of creatine supplementation on brain function in healthy individuals. It appears that brain creatine is responsive to supplementation, however higher, or more prolonged dosing strategies than those typically used to increase muscle creatine, may be required to elicit an increase in brain creatine. The optimal dosing strategy to induce this response, is currently unknown, and there is an urgent need for studies investigating this. When considering the influence of supplementation strategies on cognitive processes, it appears that creatine is most likely to exert an influence in situations whereby cognitive processes are stressed, e.g. during sleep deprivation, experimental hypoxia, or during the performance of more complex, and thus more cognitively demanding tasks. Evidence exists indicating that increased brain creatine may be effective at reducing the severity of, or enhancing recovery from mild traumatic brain injury, however, only limited data in humans are available to verify this hypothesis, thus representing an exciting area for further research.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Creatina/farmacologia , Substâncias para Melhoria do Desempenho/farmacologia , Química Encefálica/efeitos dos fármacos , Suplementos Nutricionais , Humanos , Músculo Esquelético/efeitos dos fármacos
6.
Amino Acids ; 48(8): 1793-805, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27108136

RESUMO

This narrative review aims to summarize the recent findings on the adjuvant application of creatine supplementation in the management of age-related deficits in skeletal muscle, bone and brain metabolism in older individuals. Most studies suggest that creatine supplementation can improve lean mass and muscle function in older populations. Importantly, creatine in conjunction with resistance training can result in greater adaptations in skeletal muscle than training alone. The beneficial effect of creatine upon lean mass and muscle function appears to be applicable to older individuals regardless of sex, fitness or health status, although studies with very old (>90 years old) and severely frail individuals remain scarce. Furthermore, there is evidence that creatine may affect the bone remodeling process; however, the effects of creatine on bone accretion are inconsistent. Additional human clinical trials are needed using larger sample sizes, longer durations of resistance training (>52 weeks), and further evaluation of bone mineral, bone geometry and microarchitecture properties. Finally, a number of studies suggest that creatine supplementation improves cognitive processing under resting and various stressed conditions. However, few data are available on older adults, and the findings are discordant. Future studies should focus on older adults and possibly frail elders or those who have already experienced an age-associated cognitive decline.


Assuntos
Envelhecimento/metabolismo , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Creatina , Suplementos Nutricionais , Músculo Esquelético/metabolismo , Idoso de 80 Anos ou mais , Envelhecimento/efeitos dos fármacos , Creatina/metabolismo , Creatina/farmacologia , Feminino , Humanos , Masculino , Resistência Física/efeitos dos fármacos , Resistência Física/fisiologia
7.
Amino Acids ; 43(2): 519-29, 2012 08.
Artigo em Inglês | MEDLINE | ID: mdl-22101980

RESUMO

There is an extensive and still growing body of the literature supporting the efficacy of creatine (Cr) supplementation. In sports, creatine has been recognized as the most effective nutritional supplement in enhancing exercise tolerance, muscle strength and lean body mass. From a clinical perspective, the application of Cr supplementation is indeed exciting. Evidences of benefits from this supplement have been reported in a broad range of diseases, including myopathies, neurodegenerative disorders, cancer, rheumatic diseases, and type 2 diabetes. In addition, after hundreds of published studies and millions of exposures creatine supplementation maintains an excellent safety profile. Thus, we contend that the widespread application of this supplement may benefit athletes, elderly people and various patient populations. In this narrative review, we aimed to summarize both the ergogenic and therapeutic effects of Cr supplementation. Furthermore, we reviewed the impact of Cr supplementation on kidney function.


Assuntos
Creatina/farmacologia , Suplementos Nutricionais , Substâncias para Melhoria do Desempenho/farmacologia , Animais , Encefalopatias/tratamento farmacológico , Creatina/metabolismo , Creatina/uso terapêutico , Humanos , Rim/efeitos dos fármacos , Rim/fisiopatologia , Doenças Musculoesqueléticas/tratamento farmacológico , Substâncias para Melhoria do Desempenho/metabolismo , Substâncias para Melhoria do Desempenho/uso terapêutico , Treinamento Resistido , Esportes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA