Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34925478

RESUMO

BACKGROUND: The efficacy of bone marrow mesenchymal stromal cells (BM-MSC) and its extracellular vesicles has been demonstrated for a broad spectrum of indications, including kidney diseases. However, BM-MSC donor characteristics and their potential are not usually considered. Therefore, the present work aims to evaluate the nephroprotective capacity of sEV secreted by BM-MSC from trained rats inunilateral ureteral obstruction (UUO) model. METHODS: BM-MSC was characterized by their differentiation potential and immunophenotypic markers. The sEV were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis and western blot. Its miRNA cargo was examined by quantitative PCR analysis for miR-26a, 126a, and 296. Wistar rats were submitted to UUO procedure and concomitantly treated with sEV secreted by BM-MSC from the untrained andtrained rats. The kidney tissue from all groups was evaluated for fibrosis mediators (transforming growth factor beta1 and collagen), CD34-angiogenesis marker, and hypoxia-inducible factor 1 alpha (HIF-1α). RESULTS: Treadmill training stimulated in BM-MSC the production of sEV loaded with pro-angiogenic miR-296. The treatment with this sEVin UUO-rats was able to attenuate collagen accumulation and increase CD34 and HIF-1α in the kidney tissue when compared to untrained ones. Tubular proximal cells under hypoxia and exposed to BM-MSC sEV demonstrate accumulation in HIF-1α and NFR-2 (nuclear factor erythroid 2-related factor 2), possibly to mediate the response to hypoxia and oxidative stress, under these conditions. CONCLUSION: The BM-MSC sEV from trained animals presented an increased nephroprotective potential compared to untrained vesicles by carrying 296-angiomiR and contributing to angiogenesis in UUO model.

2.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;272021.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484784

RESUMO

Abstract Background: The efficacy of bone marrow mesenchymal stromal cells (BM-MSC) and its extracellular vesicles has been demonstrated for a broad spectrum of indications, including kidney diseases. However, BM-MSC donor characteristics and their potential are not usually considered. Therefore, the present work aims to evaluate the nephroprotective capacity of sEV secreted by BM-MSC from trained rats inunilateral ureteral obstruction (UUO) model. Methods: BM-MSC was characterized by their differentiation potential and immunophenotypic markers. The sEV were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis and western blot. Its miRNA cargo was examined by quantitative PCR analysis for miR-26a, 126a, and 296. Wistar rats were submitted to UUO procedure and concomitantly treated with sEV secreted by BM-MSC from the untrained andtrained rats. The kidney tissue from all groups was evaluated for fibrosis mediators (transforming growth factor beta1 and collagen), CD34-angiogenesis marker, and hypoxia-inducible factor 1 alpha (HIF-1). Results: Treadmill training stimulated in BM-MSC the production of sEV loaded with pro-angiogenic miR-296. The treatment with this sEVin UUO-rats was able to attenuate collagen accumulation and increase CD34 and HIF-1 in the kidney tissue when compared to untrained ones. Tubular proximal cells under hypoxia and exposed to BM-MSC sEV demonstrate accumulation in HIF-1 and NFR-2 (nuclear factor erythroid 2-related factor 2), possibly to mediate the response to hypoxia and oxidative stress, under these conditions. Conclusion: The BM-MSC sEV from trained animals presented an increased nephroprotective potential compared to untrained vesicles by carrying 296-angiomiR and contributing to angiogenesis in UUO model.

3.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;27: e20200187, 2021. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1351016

RESUMO

Background: The efficacy of bone marrow mesenchymal stromal cells (BM-MSC) and its extracellular vesicles has been demonstrated for a broad spectrum of indications, including kidney diseases. However, BM-MSC donor characteristics and their potential are not usually considered. Therefore, the present work aims to evaluate the nephroprotective capacity of sEV secreted by BM-MSC from trained rats inunilateral ureteral obstruction (UUO) model. Methods: BM-MSC was characterized by their differentiation potential and immunophenotypic markers. The sEV were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis and western blot. Its miRNA cargo was examined by quantitative PCR analysis for miR-26a, 126a, and 296. Wistar rats were submitted to UUO procedure and concomitantly treated with sEV secreted by BM-MSC from the untrained andtrained rats. The kidney tissue from all groups was evaluated for fibrosis mediators (transforming growth factor beta1 and collagen), CD34-angiogenesis marker, and hypoxia-inducible factor 1 alpha (HIF-1α). Results: Treadmill training stimulated in BM-MSC the production of sEV loaded with pro-angiogenic miR-296. The treatment with this sEVin UUO-rats was able to attenuate collagen accumulation and increase CD34 and HIF-1α in the kidney tissue when compared to untrained ones. Tubular proximal cells under hypoxia and exposed to BM-MSC sEV demonstrate accumulation in HIF-1α and NFR-2 (nuclear factor erythroid 2-related factor 2), possibly to mediate the response to hypoxia and oxidative stress, under these conditions. Conclusion: The BM-MSC sEV from trained animals presented an increased nephroprotective potential compared to untrained vesicles by carrying 296-angiomiR and contributing to angiogenesis in UUO model.(AU)


Assuntos
Obstrução Ureteral , Vesículas Extracelulares , Nefropatias , Hipóxia , Estresse Oxidativo
4.
PLoS One ; 8(2): e55363, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23408975

RESUMO

Previous studies have suggested that exercise improves renal and cardiac functions in patients with chronic kidney disease. The aim of this study was to evaluate the effects of long-term aerobic swimming exercise with overload on renal and cardiac function in rats with 5/6 nefrectomy (5/6Nx). Eight Wistar rats were placed into 4 groups: Control (C), Control+Exercise (E), Sedentary 5/6Nx (NxS) and 5/6Nx+Exercise (NxE). The rats were subjected to swimming exercise sessions with overload for 30 min five days per week for five weeks. Exercise reduced the effect of 5/6Nx on creatinine clearance compared to the NxS group. In addition, exercise minimized the increase in mean proteinuria compared to the NxS group (96.9±10.0 vs. 51.4±9.9 mg/24 h; p<0.05). Blood pressure was higher in the NxS and NxE groups compared to the C and E groups (216±4 and 178±3 vs. 123±2 and 124±2 mm Hg, p<0.05). In the 200 glomeruli that were evaluated, the NxS group had a higher sclerosis index than did the NxE group (16% vs. 2%, p<0.05). Echocardiography demonstrated a higher anterior wall of the left ventricle (LV) in diastole in the NxS group compared with the C, E and NxE groups. The NxS group also had a higher LV posterior wall in diastole and systole compared with the E group. The developed isometric tension in Lmax of the heart papillary muscle was lower in the NxS group compared with the C, E and NxE groups. These results suggested that exercise in 5/6Nx animals might reduce the progression of renal disease and lessen the cardiovascular impact of a reduction in renal mass.


Assuntos
Coração/fisiopatologia , Falência Renal Crônica/fisiopatologia , Rim/fisiopatologia , Condicionamento Físico Animal , Animais , Ecocardiografia , Masculino , Ratos , Ratos Wistar
5.
PLoS One ; 7(11): e48826, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144989

RESUMO

Exercise training (ET) is an important intervention for chronic diseases such as diabetes mellitus (DM). However, it is not known whether previous exercise training intervention alters the physiological and medical complications of these diseases. We investigated the effects of previous ET on the progression of renal disease and cardiovascular autonomic control in rats with streptozotocin (STZ)-induced DM. Male Wistar rats were divided into five groups. All groups were followed for 15 weeks. Trained control and trained diabetic rats underwent 10 weeks of exercise training, whereas previously trained diabetic rats underwent 14 weeks of exercise training. Renal function, proteinuria, renal sympathetic nerve activity (RSNA) and the echocardiographic parameters autonomic modulation and baroreflex sensitivity (BRS) were evaluated. In the previously trained group, the urinary albumin/creatinine ratio was reduced compared with the sedentary diabetic and trained diabetic groups (p<0.05). Additionally, RSNA was normalized in the trained diabetic and previously trained diabetic animals (p<0.05). The ejection fraction was increased in the previously trained diabetic animals compared with the diabetic and trained diabetic groups (p<0.05), and the myocardial performance index was improved in the previously trained diabetic group compared with the diabetic and trained diabetic groups (p<0.05). In addition, the previously trained rats had improved heart rate variability and BRS in the tachycardic response and bradycardic response in relation to the diabetic group (p<0.05). This study demonstrates that previous ET improves the functional damage that affects DM. Additionally, our findings suggest that the development of renal and cardiac dysfunction can be minimized by 4 weeks of ET before the induction of DM by STZ.


Assuntos
Diabetes Mellitus Experimental/terapia , Coração/fisiopatologia , Rim/fisiopatologia , Condicionamento Físico Animal , Animais , Barorreflexo , Glicemia , Peso Corporal , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia , Progressão da Doença , Ecocardiografia , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA