Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2804, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531518

RESUMO

In this study we report, the synthesis of ZnO and its doping with Transition Metal Oxides -TMO-, such as Cr2O3, MnO2, FeO, CoO, NiO, Cu2O and CuO. Various characterization techniques were employed to investigate the structural properties. The X-ray diffraction (XRD) data and Rietveld refinement confirmed the presence of TMO phases and that the ZnO structure was not affected by the doping with TMO which was corroborated using transmission Electron microscopy (TEM). Surface areas were low due to blockage of adsorption sites by particle aggregation. TMO doping concentration in the range of 3.7-5.1% was important to calculate the catalytic activity. The UV-Visible spectra showed the variation in the band gap of TMO/ZnO ranging from 3.45 to 2.46 eV. The surface catalyzed decomposition of H2O2 was used as the model reaction to examine the photocatalytic activity following the oxygen production and the systems were compared to bulk ZnO and commercial TiO2-degussa (Aeroxyde-P25). The results indicate that the introduction of TMO species increase significantly the photocatalytic activity. The sunlight photocatalytic performance in ZnO-doped was greater than bulk-ZnO and in the case of MnO2, CoO, Cu2O and CuO surpasses TiO2 (P25-Degussa). This report opens up a new pathway to the design of high-performance materials used in photocatalytic degradation under visible light irradiation.

2.
Phys Chem Chem Phys ; 22(14): 7329-7339, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32211632

RESUMO

A shape-selective preparation method was used to obtain highly crystalline rod-, needle-, nut-, and doughnut-like ZnO morphologies with distinct particle sizes and surface areas. We study the nucleation and growth mechanism of those structures and the influence of physical-chemical parameters, such as the solvent and the pH of the solution, on the morphology, as well as the structural and optical properties. A clear correlation between the growth rate along the c-axis and surface defects was established. Our results suggest that the needle- and rod-like morphologies are formed due to the crystal growth orientation along the c-axis and the occurrence of crystalline defects, such as oxygen vacancies and interstitial Zn2+ located at the surface, whereas nuts and doughnuts are formed due to growth along all crystalline planes except those related to growth along the c-axis. Based on the experimental results, growth mechanisms for the formation of ZnO structures were proposed. We believe this synthetic route will be of guidance to prepare several materials whose shapes will depend on the desired applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA