RESUMO
In the last decade, the vision systems have improved their capabilities to capture 3D images in bad weather scenarios. Currently, there exist several techniques for image acquisition in foggy or rainy scenarios that use infrared (IR) sensors. Due to the reduced light scattering at the IR spectra it is possible to discriminate the objects in a scene compared with the images obtained in the visible spectrum. Therefore, in this work, we proposed 3D image generation in foggy conditions using the single-pixel imaging (SPI) active illumination approach in combination with the Time-of-Flight technique (ToF) at 1550 nm wavelength. For the generation of 3D images, we make use of space-filling projection with compressed sensing (CS-SRCNN) and depth information based on ToF. To evaluate the performance, the vision system included a designed test chamber to simulate different fog and background illumination environments and calculate the parameters related to image quality.
RESUMO
BACKGROUND: We compared the effectiveness of a single irradiation vs repetitive irradiation of light, for in vitro photodynamic inactivation (PDI) of Candida albicans and Trichophyton mentagrophytes, by using methylene blue (MB) and rose bengal (RB) as photosensitizers (PS). METHODS: MB from 5 to 60 µM and RB from 0.5 to 10 µM, with energy densities from 10 to 60 J/cm2, were tested in C. albicans. We further optimize the PDI by reducing the light energy density and PS concentration for the single irradiation experiments by using repetitive doses (two and three times). MB was tested in C. albicans and T. mentagrophytes, and RB was tested in C. albicans. RESULTS: MB-PDI and RB-PDI in C. albicans significantly reduced the number of colony-forming units per milliliter (CFU/mL) when compared to the control groups. Using a single irradiation, over 99% growth inhibition of C. albicans was obtained with MB at 20 µM-60 J/cm2, and with RB at 1 µM-30 J/cm2 and 5 µM-10 J/cm2. With repetitive doses, similar results were obtained by reducing several times the light energy density and the PS concentration for C. albicans and T. mentagrophytes. CONCLUSIONS: The results showed that RB was more effective than MB for C. albicans inactivation. In addition, it is possible to significantly reduce the amount of PS and light energy density requirements by using repetitive irradiations in both genera tested. It makes the technique less invasive and could reduce the side effects in people extremely sensitive to the PS or the light.
Assuntos
Candida albicans/efeitos dos fármacos , Azul de Metileno/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Rosa Bengala/farmacologia , Trichophyton/efeitos dos fármacos , Técnicas In VitroRESUMO
In this work we demonstrate optical trapping and manipulation of microparticles suspended in water due to laser-induced convection currents. Convection currents are generated due to laser light absorption in an hydrogenated amorphous silicon (a:Si-H) thin film. The particles are dragged towards the beam's center by the convection currents (Stokes drag force) allowing trapping with powers as low as 0.8 mW. However, for powers >3 mW trapped particles form a ring around the beam due to two competing forces: Stokes drag and thermo-photophoretic forces. Additionally, we show that dynamic beam shaping can be used to trap and manipulate multiple particles by photophotophoresis without the need of lithographically created resistive heaters.
RESUMO
Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.