RESUMO
The management of water resources in hyper-arid coastal regions is a challenging task because proper information regarding groundwater recharge and water budget is needed for maintaining the hydraulic balance in optimal conditions, avoiding salinization and seawater intrusion. Thus, this article deals with the estimation of the hydraulic recharge and the study of the effects of salinization on the dynamics of major and trace elements in an alluvial aquifer located in the world's driest zone, the northern Atacama Desert. The result of stable water isotopes (δD and δ18O) and tritium (3H) indicated that groundwater in the area is not recent, whereas 14C results estimated a groundwater residence time ranging between 11,628 and 16,067 yBP. The estimation of the artificial recharge coming from the urban water-supply-system leaks and wastewater/river-water/groundwater infiltration during irrigation was about 19.84 hm3/year, which represents an annual negative water balance of 177 hm3/year for the aquifer. The groundwater salinization triggered by seawater intrusion (up to 32.6 %) has caused the enrichment of Li, Rb, Ca, Ba, and Sr in groundwater by cationic exchange, where the excess of aqueous Na is exchanged by these elements in the aquifer sediments. Other elements such as B, Se, Si, and Sb are enriched in groundwater by ionic strength and/or anionic exchange during salinization. The heightened B concentrations derived from the B-rich alluvial sediments were higher than the limit suggested by international guidelines, representing a risk to consumers. Vanadium seems to be unaffected by salinization, whereas Pb, Mo, As, U, and Zr did not show a clear behavior during saline intrusion. Finally, this article highlights the consequences of conducting improper water management in coastal hyper-arid regions with exacerbated agriculture.
RESUMO
Global warming is influenced by an increase in greenhouse gas (GHG) concentration in the atmosphere. Consequently, Net Ecosystem Exchange (NEE) is the main factor that influences the exchange of carbon (C) between the atmosphere and the soil. As a result, agricultural ecosystems are a potential carbon dioxide (CO2) sink, particularly rice paddies (Oryza sativa). Therefore, a static chamber with a portable CO2 analyzer was designed and implemented for three rice plots to monitor CO2 emissions. Furthermore, a weather station was installed to record meteorological variables. The vegetative, reproductive, and maturation phases of the crop lasted 95, 35, and 42 days post-sowing (DPS), respectively. In total, the crop lasted 172 DPS. Diurnal NEE had the highest CO2 absorption capacity at 10:00 a.m. for the tillering stage (82 and 89 DPS), floral primordium (102 DPS), panicle initiation (111 DPS), and flowering (126 DPS). On the other hand, the maximum CO2 emission at 82, 111, and 126 DPS occurred at 6:00 p.m. At 89 and 102 DPS, it occurred at 4:00 and 6:00 a.m., respectively. NEE in the vegetative stage was -25 µmolCO2 m2 s-1, and in the reproductive stage, it was -35 µmolCO2 m2 s-1, indicating the highest absorption capacity of the plots. The seasonal dynamics of NEE were mainly controlled by the air temperature inside the chamber (Tc) (R = -0.69), the relative humidity inside the chamber (RHc) (R = -0.66), and net radiation (Rn) (R = -0.75). These results are similar to previous studies obtained via chromatographic analysis and eddy covariance (EC), which suggests that the portable analyzer could be an alternative for CO2 monitoring.
Assuntos
Oryza , Dióxido de Carbono , Ecossistema , Agricultura , AtmosferaRESUMO
This document presents the physical-chemical parameters with the objective of evaluating and analyzing the drinking water quality in the Azogues city applying the water quality index (WQI) and to research the water stability in the distribution network using corrosion indexes. Thirty samples were collected monthly for six months throughout the drinking water distribution network; turbidity, temperature, electric conductivity, pH, total dissolved solids, total hardness, calcium, magnesium, alkalinity, chlorides, nitrates, sulfates and phosphates were determined; the physical-chemical parameters were measured using standard methods. The processed data revealed that the average values ââof LSI, RSI and PSI were 0.5 (±0.34), 6.76 (±0.6), 6.50 (±0.99) respectively. The WQI calculation indicated that 100% of the samples are considered excellent quality water. According to the Langelier, Ryznar and Pukorius indexes showed that drinking water in Azogues is corrosive. The quality of drinking water according to the WQI is in a good and excellent category.