Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(10): 5882-5892, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32110787

RESUMO

Polycyclic aromatic hydrocarbon (PAH) molecules such as quasi-unidimensional oligo-acene and fused azulene display interesting properties for increasing chain length. However, these molecules can be hard to explore computationally due to the number of atoms involved and the fast-increasing numerical cost when using many-body methods. The identification of magnetic PAH molecules is most relevant for technological applications and hence it would be of particular interest to develop rapid preliminary checks to identify likely candidates for both theoretical and experimental pursuits. In this article, we show that an analysis based on a second-order perturbation treatment of electronic correlations for the Hubbard model qualitatively predicts the outcome of more extensive and accurate methods. Based on these results we propose a simple computational protocol for screening molecules and identifying those worthy of a more sophisticated analysis on the magnetic nature of their ground states. Using this protocol we were able to identify two new magnetic molecules made from the combination of only two naphthalene monomers and two azulene ones (both isomers with formula C34H20). For further confirmation of this result, these molecules were also studied by means of density matrix renormalization group and density functional theory.

2.
Phys Rev Lett ; 103(26): 266807, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20366334

RESUMO

Coherent electronic transport through individual molecules is crucially sensitive to quantum interference. We investigate the zero-bias and zero-temperature conductance through pi-conjugated annulene molecules weakly coupled to two leads for different source-drain configurations, finding an important reduction for certain transmission channels and for particular geometries as a consequence of destructive quantum interference between states with definite momenta. When translational symmetry is broken by an external perturbation we find an abrupt increase of the conductance through those channels. Previous studies concentrated on the effect at the Fermi energy, where this effect is very small. By analyzing the effect of symmetry breaking on the main transmission channels we find a much larger response thus leading to the possibility of a larger switching of the conductance through single molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA