Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(24): 16568-16578, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29873361

RESUMO

While arsenous acid, As(OH)3, has been the subject of a plethora of studies due to its worldwide ubiquity and its toxicity, pentavalent As in the form of arsenic acid, AsO(OH)3, has recently been found in rivers in central Mexico as the most abundant naturally occurring arsenic species. To better understand the solvation patterns of both toxic acids at the molecular level, we report the results of Born-Oppenheimer molecular dynamics simulations on the aqueous solvation of the AsO(OH)3 and As(OH)3 molecules at room temperature using the cluster microsolvation approach including 30 water molecules at the B3LYP/6-31G** level of theory. We found that the average per-molecule water binding energy is ca. 1 kcal mol-1 larger for the As(v) species as compared to the As(iii) one. To account for the asymmetry of both molecules, the hydration patterns were studied separately for a "lower" hemisphere, defined by the initially protonated oxygens, and for the opposite "upper" hemisphere. Similar lower hydration patterns were found for both As(iii) and As(v), with the same coordination number CN = 7. The upper pattern for As(iii) was found to be of a hydrophobic type, whereas that for As(v) showed the fourth oxygen to be hydrogen-bonded to the water network, yielding CN = 3.7; moreover, a proton "hopped" from the lower to the upper side, through the Grotthuss mechanism. Theoretical EXAFS spectra were obtained that showed good agreement with experimental data for As(iii) and As(v) in liquid water, albeit with somewhat longer As-O distances due to the level of theory employed. Proton transfer processes were also addressed; we found that the singly deprotonated H2AsO3- species largely dominated (99% of the simulation) for the As(iii) case, and that the deprotonated H2AsO4- and HAsO42- species were almost equally present (45% and 55%, respectively) for the As(v) case, which is in line with the experimental data pKa1 = 2.24 and pKa2 = 6.96. Through vibrational analysis the features of the Eigen and Zundel ions were found in the spectra of the microsolvated As(iii) and As(v) species, in good agreement with experimental data in aqueous solutions.

2.
J Chem Phys ; 148(14): 144307, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29655339

RESUMO

The hydration features of [Mg(H2O)n]2+ and [Ca(H2O)n]2+ clusters with n = 3-6, 8, 18, and 27 were studied by means of Born-Oppenheimer molecular dynamics simulations at the B3LYP/6-31+G** level of theory. For both ions, it is energetically more favorable to have all water molecules in the first hydration shell when n ≤ 6, but stable lower coordination average structures with one water molecule not directly interacting with the ion were found for Mg2+ at room temperature, showing signatures of proton transfer events for the smaller cation but not for the larger one. A more rigid octahedral-type structure for Mg2+ than for Ca2+ was observed in all simulations, with no exchange of water molecules to the second hydration shell. Significant thermal effects on the average structure of clusters were found: while static optimizations lead to compact, spherically symmetric hydration geometries, the effects introduced by finite-temperature dynamics yield more prolate configurations. The calculated vibrational spectra are in agreement with infrared spectroscopy results. Previous studies proposed an increase in the coordination number (CN) from six to eight water molecules for [Ca(H2O)n]2+ clusters when n ≥ 12; however, in agreement with recent measurements of binding energies, no transition to a larger CN was found when n > 8. Moreover, the excellent agreement found between the calculated extended X-ray absorption fine structure spectroscopy spectra for the larger cluster and the experimental data of the aqueous solution supports a CN of six for Ca2+.

3.
J Chem Phys ; 146(8): 084307, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28249411

RESUMO

In this work, a theoretical investigation was made to assess the coordination properties of Pb(ii) in [Pb(H2O)n]2+ clusters, with n = 4, 6, 8, 12, and 29, as well as to study proton transfer events, by means of Born-Oppenheimer molecular dynamics simulations at the B3LYP/aug-cc-pVDZ-pp/6-311G level of theory, that were calibrated in comparison with B3LYP/aug-cc-pVDZ-PP/aug-cc-pVDZ calculations. Hemidirected configurations were found in all cases; the radial distribution functions (RDFs) produced well defined first hydration shells (FHSs) for n = 4,6,8, and 12, that resulted in a coordination number CN = 4, whereas a clear-cut FHS was not found for n = 29 because the RDF did not have a vacant region after the first maximum; however, three water molecules remained directly interacting with the Pb ion for the whole simulation, while six others stayed at average distances shorter than 4 Å but dynamically getting closer and farther, thus producing a CN ranging from 6 to 9, depending on the criterion used to define the first hydration shell. In agreement with experimental data and previous calculations, proton transfer events were observed for n≤8 but not for n≥12. For an event to occur, a water molecule in the second hydration shell had to make a single hydrogen bond with a water molecule in the first hydration shell.

4.
Phys Chem Chem Phys ; 19(4): 2826-2833, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28067364

RESUMO

The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε1 phase and a higher pressure NM ε0 phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O2 molecules in the (O2)4 unit cell were studied. Full enthalpy-driven geometry optimizations of the (O2)4 unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O2)4 unit cell for the low-pressure regime of the ε phase.

5.
J Chem Phys ; 133(11): 114501, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20866139

RESUMO

A theoretical study of the hydration of arsenious acid is presented. This study included ab initio calculations and Monte Carlo simulations. The model potentials used for the simulations were ab initio derived and they include polarizability, nonadditivity, and molecular relaxation. It is shown that with these refined potentials it is possible to reproduce the available experimental evidence and therefore permit the study of clusters, as well as of the hydration process in solution. From the study of stepwise hydration and the Monte Carlo simulation of the condensed phase it is concluded that As(OH)(3) presents a hydration scheme similar to an amphipathic molecule. This phenomenon is explained as due to the existence of both a positive electrostatic potential and a localized lone pair in the vicinity of As. These results are used to rationalize the known passage of As(OH)(3) through aqua-glyceroporines.

6.
J Chem Phys ; 131(12): 124308, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19791882

RESUMO

The nine lowest-lying singlet and triplet (X (1)Sigma(+), 2 (1)Sigma(+), 3 (1)Sigma(+), (3)Sigma(+), 1 (3,1)Pi, 2 (3)Pi, and (3,1)Delta) electronic states of AgBr were studied through state-specific Complete Active Space Self-Consistent Field with 16 active electrons in 12 orbitals followed by extensive Averaged Coupled Pair Functional and CIPT2 calculations with large optimized valence basis sets. The spin-orbit effects were included to obtain the Omega fine-structure states arising from the |Lambda S Sigma> parents. Even before the inclusion of the spin-orbit effects, the 2 (1)Sigma(+) and 3 (1)Sigma(+) states present shallow minima near the equilibrium geometry of the ground state. The 2 (1)Sigma(+) state has another minimum around 8.0 a.u. and is attractive up to 20 a.u. The lowest (3,1)Pi states were found to be totally repulsive while the (3,1)Delta states present deep minima around 4.8 a.u. Most of the calculated spectroscopic constants for the ground and B states are slightly improved with respect to the previous theoretical study using the much smaller CASSCF(16,10) reference wave functions [M. Guichemerre et al., Chem. Phys. 280, 71 (2002)]. The observed B<--X transition is confirmed as arising from the singlet-to-singlet 0(+)(2 (1)Sigma(+))<--0(+)(X (1)Sigma(+)) excitation around 31 900 cm(-1). However, at variance with the previous theoretical prediction, the C(Omega=0(+)) state is dominated around the equilibrium geometry of the ground state by the third (1)Sigma(+) state with a small contribution from the 2 (3)Pi state around 43,500 cm(-1); thus the X-C excitation is now explained as arising also from a singlet-to-singlet spin-allowed transition.

7.
J Chem Phys ; 124(24): 244703, 2006 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-16821992

RESUMO

We have performed periodic restricted Hartree-Fock/6-31G** and B3LYP6-31G** density functional theory calculations on Li-doped trans-polyacetylene at various dopant concentrations, using C(2m)H(2m)Li2 unit cells (m = 7-14). Except for maintaining P1 rod symmetry the geometry was completely optimized for both uniform and nonuniform doping structures. In addition to geometry we obtain atomic charges, along with soliton formation and dopant binding energies, as well as band structures and densities of states. A thorough analysis of the band structure and density of states, as a function of dopant concentration, is presented. We also characterize the complex nature of the binding interaction between Li and the polyacetylene chain.

8.
J Phys Chem B ; 109(26): 12946-55, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16852607

RESUMO

Details on the mechanism of HF catalyzed isobutylene-isobutane alkylation were investigated. On the basis of available experimental data and high-level quantum chemical calculations, a detailed reaction mechanism is proposed taking into account solvation effects of the medium. On the basis of our computational results, we explain why the density of the liquid media and stirring rates are the most important parameters to achieve maximum yield of alkylate, in agreement with experimental findings. The ab initio Car-Parrinello molecular dynamics calculations show that isobutylene is irreversibly protonated in the liquid HF medium at higher densities, leading to the ion pair formation, which is shown to be a minimum on the potential energy surface after optimization using periodic boundary conditions. The HF medium solvates preferentially the fluoride anion, which is found as solvated [FHF](-) or solvated F(-.)(HF)(3). On the other hand, the tert-butyl cation is weakly solvated, where the closest HF molecules appear at a distance of about 2.9 Angstrom with the fluorine termination of an HF chain.

9.
J Chem Phys ; 120(5): 2319-24, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15268370

RESUMO

The lowest Omega = 0-,0+,1,2 fine-structure potential energy curves arising from the two lowest-lying singlet (X 1Sigma+ and 2 1Sigma+) and the first 3Pi electronic states of AgI were obtained through an effective Hamiltonian; the purely electronic LambdaSSigma energies were used as diagonal elements, which were calculated through extensive complete active space self-consistent field + averaged coupled pair functional calculations, with relativistic effective core potentials and optimized Gaussian basis sets for both atoms. The spin-orbit interactions were included using the Stuttgart effective spin-orbit potentials. For the excited Omega = 0+ states, very strong mixtures were found of the 2 1Sigma+ and 3Pi parents that lead to the fine-structure (0+) single B state (dominated by the 2 1Sigma+ parent at long distance), that explains the B <-- X transitions. The present results also explain the presence of a second long-distance minimum for the B0+ state, experimentally Rydberg-Klein-Rees fitted. These calculations produced, as a byproduct, a new lower-lying Omega = 0+ yet unobserved fine-structure state predicted to exist around 22,000 cm(-1). Our theoretical results are compared and discussed in the light of the experimental data for the B-X transitions in silver halides [J. Chem. Phys. 109, 9831 (1998)].

10.
J Org Chem ; 65(17): 5207-11, 2000 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-10993347

RESUMO

Reported here are some rearrangements involving the electrocyclic ring closure of dieneynes 7. Such ring closures are envisaged to possibly give strained substituted cyclic allenes 8 which could also behave as diradicals 8a. The results show that compounds such as 5 rearrange to cyclohexadienones 9a, 9b, or 11 through these kind of intermediates. Theoretical calculations performed on simple models similar to the intermediates suggest that the nature of these intermediates correspond to that of cyclic allenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA