Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Soft Matter ; 11(4): 655-8, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25513994

RESUMO

In this work we report experimental and theoretical results for the motion of single colloidal particles embedded in complex fluids with different interparticle interactions. The motion of particles is found to follow a similar behavior for the different systems. In particular, the transition from the short-time diffusive motion to the subdiffusive intermediate-time motion is found to occur when the square root of its mean squared displacement is in the order of 1 tenth of the neighbors' interparticle distance, thus following a quantitative criterion similar to Lindemann's criterion for melting.

2.
J Phys Condens Matter ; 24(46): 464126, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23114421

RESUMO

The correlation between the motion of pairs of colloidal particles confined in a planar pore is measured using optical microscopy. The systems studied here are aqueous suspensions of polystyrene spheres of diameter 1.9 µm, interacting as effective hard spheres, confined between two parallel planar plates separated by 2.9 µm. The lateral motion, along the plane parallel to the plates, of the particles is recorded with a time resolution of 30 frames s(-1). From the short-time motion, the hydrodynamic diffusion coefficients are determined as functions of the interparticle distance for various particle concentrations. At low concentrations, when the static correlation between particles is also low, the diffusion coefficients exhibit some symmetry, and at higher concentrations they are modulated by the structure of static correlation.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 1): 030402, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21517444

RESUMO

The hydrodynamic hindering of a single-particle dynamics under total confinement is measured by optical microscopy. The three-dimensional trajectories of single-colloidal particles confined in spherical water globules of sizes only a few times the particle's diameter are tracked as they sample the entire volume of the globule. The hydrodynamic interactions between the particle and the spherical wall produce a dependence of the short-time diffusion on the particle's distance to the surface and an asymmetry in the radial and tangential components of the local diffusion coefficient, with the diffusion along the tangential direction being faster than along the radial direction. The latter decreasing close to the wall while the former being practically constant.


Assuntos
Coloides/química , Difusão , Hidrodinâmica , Imageamento Tridimensional , Microscopia de Vídeo/métodos , Modelos Teóricos , Movimento (Física) , Tamanho da Partícula , Física , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA