Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chirality ; 34(6): 864-876, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315141

RESUMO

The occurrence of racemic and enantiomerically enriched (scalemic) mixtures of secondary metabolites in their natural sources is a rare phenomenon. The unprecedent case of enantiomeric variations from levorotatory to dextrorotatory, and back to levorotatory, passing through an almost racemic mixture, was recently documented for areolal, the major epoxythymol of Piptothrix areolare. In an attempt to shed some light to understand the reasons for such an unusual behavior, herein, we evaluated this phenomenon by correlating the areolal enantiomeric purity with several environmental variables, including temperature, humidity, rain precipitation, wind speed, and radiation during over 1 year of the plant life cycle. The specific rotation and enantiomeric excess determined by 1 H-NMR-BINOL measurements provided the scalemic variations of areolal samples isolated from the roots collected from the same location along a 427-day period. The 1 H-NMR-BINOL methodology provided better sensitivity to enantiomeric variations than specific rotation measurements. Statistical data, including matrix correlation analysis, exploratory analysis by heatmap plotting, and the principal component analysis (PCA), suggested direct correlation of the scalemic variation with humidity, rain precipitation, and radiation variables with the best PCA explanation (78.4%) and noncritical or poor correlations in PCA explained in 60.2% and 48.4%, respectively. When variations in the optical activity parameter of any metabolite are observed, the search for scalemic mixtures along their host plant life cycle should be undertaken. Herein, this phenomenon could be associated with interactions with soil microorganisms and with evolutionary aspects of Piptothrix areolare which belongs to Asteraceae, one of the most successfully adaptable plant families.


Assuntos
Asteraceae , Asteraceae/química , Espectroscopia de Ressonância Magnética , Rotação Ocular , Estereoisomerismo
2.
Plants (Basel) ; 8(11)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731430

RESUMO

Leaves of semi-domesticated Diospyros digyna and wild D. rekoi trees, sampled seasonally in Mexico in 2014, were analyzed. Metabolic fingerprints revealed higher metabolite diversity in D. rekoi leaves. The TLC bands characteristic of glycosylated flavonoids, predominant in this species, matched the detection of quercetin and quercetin 3-O-glucuronides by liquid chromatography (UPLC-MS) of spring leaf extracts (LEs). Further gas chromatography (GC-MS) analysis revealed abundant fatty acids, organic acids, and secondary metabolites including trigonelline, p-coumaric, and ferulic and nicotinic acids. Phenolic-like compounds prevailed in D. digyna LEs, while unidentified triterpenoids and dihydroxylated coumarins were detected by UPLC-MS and GC-MS. A paucity of leaf metabolites in leaves of this species, compared to D. rekoi, was evident. Higher antioxidant capacity (AOC) was detected in D. digyna LEs. The AOC was season-independent in D. digyna but not in D. rekoi. The AOC in both species was concentrated in distinct TLC single bands, although seasonal variation in band intensity was observed among trees sampled. The AOC in D. digyna LEs could be ascribed to the coumarin esculetin. The LEs moderately inhibited phytopathogenic bacteria but not fungi. Leaf chemistry differences in these Mesoamerican Diospyros species substantiated previous variability reported in tree physiology and fruit physical chemistry, postulated to result from domestication and seasonality.

3.
PLoS One ; 12(10): e0187235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073239

RESUMO

This study was performed to test the working hypothesis that the primary determinants influencing seasonal driven modifications in carbon mobilization and other key biochemical parameters in leaves of poorly known Diospyros digyna (Ddg; semi-domesticated; perennial) and D. rekoi (Dre; undomesticated; deciduous) trees are determined by environmental growing conditions, agronomic management and physiological plasticity. Thus, biochemical changes in leaves of both trees were recorded seasonally during two successive fruiting years. Trees were randomly sampled in Western Mexico habitats with differing soil quality, climatic conditions, luminosity, and cultivation practices. Leaves of Ddg had consistently higher total chlorophyll contents (CT) that, unexpectedly, peaked in the winter of 2015. In Dre, the highest leaf CT values recorded in the summer of 2015 inversely correlated with low average luminosity and high Chl a/ Chlb ratios. The seasonal CT variations in Dre were congruent with varying luminosity, whereas those in Ddg were probably affected by other factors, such as fluctuating leaf protein contents and the funneling of light energy to foliar non-structural carbohydrates (NSCs) accumulation, which were consistently higher than those detected in Dre leaves. Seasonal foliar NSC fluctuations in both species were in agreement with the carbon (C) demands of flowering, fruiting and/ or leaf regrowth. Seasonal changes in foliar hexose to sucrose (Hex/ Suc) ratios coincided with cell wall invertase activity in both species. In Dre, high Hex/ Suc ratios in spring leaves possibly allowed an accumulation of phenolic acids, not observed in Ddg. The above results supported the hypothesis proposed by showing that leaf responses to changing environmental conditions differ in perennial and deciduous Diospyros trees, including a dynamic adjustment of NSCs to supply the C demands imposed by reproduction, leaf regrowth and, possibly, stress.


Assuntos
Metabolismo dos Carboidratos , Diospyros/metabolismo , Estações do Ano , Sacarose/metabolismo , Clima , Ecossistema , México , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA