Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Avicenna J Phytomed ; 14(1): 90-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948174

RESUMO

Objective: Breast cancer is the main reason for cancer-related death in women. Britannin is a sesquiterpene lactone compound derived from Inula aucheriana with anti-tumor properties. We aimed to explore the impacts of britannin on apoptosis and autophagy in MCF-7 breast cancer cell line. Materials and Methods: The cytotoxic influences of britannin on MCF-7 cells were estimated by the MTT method. The expression levels of apoptosis-associated genes such as CASP3, BCL2, BCL2L1, STAT3, and JAK2 and transcripts of autophagy markers including ATG1, ATG4, ATG5, ATG7, ATG12, BECN1, and MAP1LC3A were quantified using quantitative real time-PCR (qRT-PCR). Western blotting method was used to evaluate the amount of caspase 3, phosphorylated JAK2, phosphorylated STAT3, ATG1, ATG4, ATG5, Beclin1, and LC-III. Results: Treatment of MCF-7 cells with various concentrations of britannin remarkably hindered the viability of these cells compared to the controls. This compound significantly elevated the expression of pro-apoptotic caspase-3 but did not influence the levels of anti-apoptotic BCL2 and BCL2L1. Britannin decreased the levels of phosphorylated forms of JAK2 and STAT3 proteins causing the blockage of the JAK/STAT pathway. Four autophagy factors expressions, including ATG4, ATG5, Beclin1, and LCIII, were reduced due to the effect of britannin on MCF-7 cells. Conclusion: Britannin triggered apoptosis in MCF-7 cells by a mechanism that led to the blockade of the JAK/STAT pathway. Moreover, britannin prohibited autophagy in these cancer cells. This may suggest britannin as an agent for the suppression of breast tumors or as an adjutant for the enhancement of anti-breast cancer drugs effect.

2.
Front Pharmacol ; 15: 1371002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529189

RESUMO

Apoptosis is a programmed cell death comprising two signaling cascades including the intrinsic and extrinsic pathways. This process has been shown to be involved in the therapy response of different cancer types, making it an effective target for treating cancer. Cancer has been considered a challenging issue in global health. Cancer cells possess six biological characteristics during their developmental process known as cancer hallmarks. Hallmarks of cancer include continuous growth signals, unlimited proliferation, resistance to proliferation inhibitors, apoptosis escaping, active angiogenesis, and metastasis. Sesquiterpene lactones are one of the large and diverse groups of planet-derived phytochemicals that can be used as sources for a variety of drugs. Some sesquiterpene lactones possess many biological activities such as anti-inflammatory, anti-viral, anti-microbial, anti-malarial, anticancer, anti-diabetic, and analgesic. This review article briefly overviews the intrinsic and extrinsic pathways of apoptosis and the interactions between the modulators of both pathways. Also, the present review summarizes the potential effects of sesquiterpene lactones on different modulators of the intrinsic and extrinsic pathways of apoptosis in a variety of cancer cell lines and animal models. The main purpose of the present review is to give a clear picture of the current knowledge about the pro-apoptotic effects of sesquiterpene lactones on various cancers to provide future direction in cancer therapeutics.

3.
Mol Biol Rep ; 51(1): 158, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252203

RESUMO

BACKGROUND: Gaillardin is a potent anti-cancer sesquiterpene lactone found in Inula oculus-christi. AIM: The present study examined the effects of gaillardin on apoptosis and autophagy in the MCF-7 breast cancer cell line. METHODS: The MTT assay was used to unravel the antiproliferative effects of gaillardin on MCF-7 cells. The expression of apoptosis-related genes including CASP3, BAX, BCL2, STAT3, and JAK2, and key markers of autophagy such as ATG1, ATG4, ATG5, ATG7, ATG12, BECN1, and MAP1LC3A were measured by real time-PCR method. The protein expression of Caspase 3, phosphorylated JAK2, phosphorylated STAT3, ATG1, ATG4, ATG5, ATG12, Beclin1, and LC-III was determined using western blotting. RESULTS: Gaillardin treatment significantly decreased the proliferation of MCF-7 cells with a parallel upregulation of the level of pro-apoptotic caspase-3 enzyme with no effect on Bax and Bcl2 expression. The levels of phosphorylated and active forms of JAK2 and STAT3 proteins were reduced following the treatment of MCF-7 cells with gaillardin. This sesquiterpene lactone com-pound considerably downregulated the levels of six autophagy markers, including ATG1, ATG4, ATG5, ATG12, Beclin1, and LC-III in MCF-7 cells. CONCLUSION: These data indicated the apoptosis-inducing activity of gaillardin in MCF-7 cells by a mechanism that inhibits the JAK/STAT signaling pathway. Further, autophagy inhibition was the other phenomenon caused by gaillardin in MCF-7 cells. These results can provide evidence to highlight the role of gaillardin as a novel therapeutic for the treatment of breast cancer.


Assuntos
Neoplasias , Sesquiterpenos , Humanos , Janus Quinases , Células MCF-7 , Proteína Beclina-1 , Proteína X Associada a bcl-2 , Fatores de Transcrição STAT , Transdução de Sinais , Apoptose , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2 , Autofagia
5.
Nutrients ; 15(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447209

RESUMO

Rutin has been reported as a potential anti-cancer agent for several decades. This study evaluated the effects of rutin on the proliferation, metastasis, and angiogenesis of MDA-MB-231 and MCF-7 breast cancer cell lines. Increasing concentrations of rutin significantly stimulated the proliferation of MDA-MB-231 and MCF-7 cells compared to controls. Wound scratch assay demonstrated that rutin had an inducing effect on the migration of the cells. In MDA-MB-231 and MCF-7 cells, rutin upregulated MKI67, VIM, CDH2, FN1, and VEGFA and downregulated CDH1 and THBS1 genes. It also increased N-cadherin and VEGFA and decreased E-cadherin and thrombospondin 1 protein expression. Our data indicated that rutin could stimulate proliferation, migration, and pro-angiogenic activity in two different breast cancer cell lines. This phytoestrogen induced invasion and migration of both cell lines by a mechanism involving the EMT process. This suggests that rutin may act as a breast-cancer-promoting phytoestrogen.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Humanos , Feminino , Células MCF-7 , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fitoestrógenos/farmacologia , Movimento Celular , Proliferação de Células
6.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770654

RESUMO

Metastasis is a multi-step phenomenon during cancer development leading to the propagation of cancer cells to distant organ(s). According to estimations, metastasis results in over 90% of cancer-associated death around the globe. Long non-coding RNAs (LncRNAs) are a group of regulatory RNA molecules more than 200 base pairs in length. The main regulatory activity of these molecules is the modulation of gene expression. They have been reported to affect different stages of cancer development including proliferation, apoptosis, migration, invasion, and metastasis. An increasing number of medical data reports indicate the probable function of LncRNAs in the metastatic spread of different cancers. Phytochemical compounds, as the bioactive agents of plants, show several health benefits with a variety of biological activities. Several phytochemicals have been demonstrated to target LncRNAs to defeat cancer. This review article briefly describes the metastasis steps, summarizes data on some well-established LncRNAs with a role in metastasis, and identifies the phytochemicals with an ability to suppress cancer metastasis by targeting LncRNAs.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Apoptose , Regulação Neoplásica da Expressão Gênica
7.
Cancers (Basel) ; 14(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35626065

RESUMO

Thyroid cancer is the most frequent endocrine malignancy and accounts for approximately 1% of all diagnosed cancers. A variety of mechanisms are involved in the transformation of a normal tissue into a malignant one. Loss of tumor-suppressor gene (TSG) function is one of these mechanisms. The normal functions of TSGs include cell proliferation and differentiation control, genomic integrity maintenance, DNA damage repair, and signaling pathway regulation. TSGs are generally classified into three subclasses: (i) gatekeepers that encode proteins involved in cell cycle and apoptosis control; (ii) caretakers that produce proteins implicated in the genomic stability maintenance; and (iii) landscapers that, when mutated, create a suitable environment for malignant cell growth. Several possible mechanisms have been implicated in TSG inactivation. Reviewing the various TSG alteration types detected in thyroid cancers may help researchers to better understand the TSG defects implicated in the development/progression of this cancer type and to find potential targets for prognostic, predictive, diagnostic, and therapeutic purposes. Hence, the main purposes of this review article are to describe the various TSG inactivation mechanisms and alterations in human thyroid cancer, and the current therapeutic options for targeting TSGs in thyroid cancer.

8.
Mol Biol Rep ; 49(2): 1027-1036, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35028851

RESUMO

BACKGROUND: FMSP is a synthesized ferrocene derivative with anti-cancer characteristics on tumor cells. Naringenin is a polyphenolic flavonoid with anti-tumor ability. METHODS: Cell viability and proliferation of two cancer cells and a normal cell line after treatment with these agents were determined with MTT assay. To predict the possible interaction between calmodulin (CaM) and FMSP and naringenin, docking studies were performed. By using fluorescence emission spectra, the effects of FMSP and naringenin on CaM structure and activity were studied. CaM-dependent activation of phosphodiesterase 1 (PDE1) by FMSP in relation to naringenin and their combination were compared. Effects of these compounds on PDE1 inhibition, cAMP accumulation, and cAMP-dependent protein kinase A (PKA) activation were assayed. RESULTS: The combination of FMSP and naringenin had more inhibitory effects on CaM structure than FMSP and naringenin alone. Results of docking analyses also confirmed efficient interaction of the two compounds with a hydrophobic pocket of calmodulin active site. Kinetic analyses of these agents' interaction with CaM showed FMSP and naringenin both competitively inhibited PDE1 activation without changing the Vmax parameter. FMSP and naringenin synergistically increased Km values at a higher level compared to FMSP or naringenin alone. The combination of these two agents also had more cytotoxic effects on cancer cells than FMSP alone. CONCLUSIONS: It was shown that mechanism of proliferation inhibition in both cancer cells by these compounds is based on CaM and consequent PDE inhibition followed by intracellular cAMP level elevation and increased PKA activity in a dose-dependent manner.


Assuntos
Calmodulina/metabolismo , Flavanonas/farmacologia , Animais , Antineoplásicos/farmacologia , Calmodulina/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Compostos Ferrosos/farmacologia , Flavonoides/farmacologia , Humanos , Metalocenos/farmacologia , Diester Fosfórico Hidrolases/metabolismo
9.
Anticancer Drugs ; 33(1): e311-e326, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34419959

RESUMO

Cancer stem cells (CSCs) play an essential role in cancer development, metastasis, relapse, and resistance to treatment. In this article, the effects of three synthesized ZnO nanofluids on proliferation, apoptosis, and stemness markers of breast cancer stem-like cells are reported. The antiproliferative and apoptotic properties of ZnO nanoparticles were evaluated on breast cancer stem-like cell-enriched mammospheres by MTS assay and flowcytometry, respectively. The expression of stemness markers, including WNT1, NOTCH1, ß-catenin, CXCR4, SOX2, and ALDH3A1 was assessed by real-time PCR. Western blotting was used to analyze the phosphorylation of Janus kinase 2 (JAK2) and Signal Transducer and Activator of Transcription 3 (STAT3). Markers of stemness were significantly decreased by ZnO nanofluids, especially sample (c) with code ZnO-148 with a different order of addition of polyethylene glycol solution at the end of formulation, which considerably decreased all the markers compared to the controls. All the studied ZnO nanofluids considerably reduced viability and induced apoptosis of spheroidal and parental cells, with ZnO-148 presenting the most effective activity. Using CD95L as a death ligand and ZB4 as an extrinsic apoptotic pathway blocker, it was revealed that none of the nanoparticles induced apoptosis through the extrinsic pathway. Results also showed a marked inhibition of the JAK/STAT pathway by ZnO nanoparticles; confirmed by downregulation of Mcl-1 and Bcl-XL expression. The present data demonstrated that ZnO nanofluids could combat breast CSCs via decreasing stemness markers, stimulating apoptosis, and suppressing JAK/STAT activity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Nanopartículas , Células-Tronco Neoplásicas/efeitos dos fármacos , Pontos Quânticos , Óxido de Zinco/farmacologia , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos , Proteína Ligante Fas/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Óxido de Zinco/administração & dosagem
10.
Biomolecules ; 11(4)2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916780

RESUMO

Cancer is a challenging problem for the global health community, and its increasing burden necessitates seeking novel and alternative therapies. Most cancers share six basic characteristics known as "cancer hallmarks", including uncontrolled proliferation, refractoriness to proliferation blockers, escaping apoptosis, unlimited proliferation, enhanced angiogenesis, and metastatic spread. Apoptosis, as one of the best-known programmed cell death processes, is generally promoted through two signaling pathways, including the intrinsic and extrinsic cascades. These pathways comprise several components that their alterations can render an apoptosis-resistance phenotype to the cell. Therefore, targeting more than one molecule in apoptotic pathways can be a novel and efficient approach for both identifying new anticancer therapeutics and preventing resistance to therapy. The main purpose of this review is to summarize data showing that various plant extracts and plant-derived molecules can activate both intrinsic and extrinsic apoptosis pathways in human cancer cells, making them attractive candidates in cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Plantas/química , Antineoplásicos Fitogênicos/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Plantas/metabolismo
11.
Int J Mol Cell Med ; 10(3): 219-226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35178360

RESUMO

Thyroid cancer is the most prevalent type of endocrine malignancy with the highest incidence rate among women under 45 years old. Ethinylestradiol (EE) and levonorgestrel (LNG) are two steroid components of low-dose oral contraceptives used all over the world. In this study, we aimed to examine the possible effects of the combination of these two steroids on metastasis and angiogenic factors in BCPAP papillary thyroid cancer (PTC) cell line. After treatment of BCPAP cells with the combination of 20 nM EE and 90 nM LNG, mRNA expression levels of long noncoding RNAs HOTAIR and MALAT1, angiogenic and antiangiogenic gene markers VEGFA and THBS1, and epithelial-mesenchymal transition (EMT) biomarkers CDH1, CDH2, FN1, and VIM were analyzed by real-time PCR. Additionally, the protein expression of VEGFA was semiquantified by Western blotting. Results showed that the combination of LNG and EE significantly elevated the level of VEGFA protein and mRNA expression of VEGFA, MALAT1, HOTAIR, CDH2, FN1, and VIM genes while decreased CDH1 gene expression but had no marked effect on the expression of THBS1 gene in comparison with the control group. Also, our results suggest that LNG and EE may increase the metastatic and migratory properties of BCPAP cells via modulating angiogenic and EMT biomarkers. These data may highlight the potential of exogenous steroids in the advancement of PTC tumors.

12.
Anticancer Agents Med Chem ; 21(8): 1027-1036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32900351

RESUMO

BACKGROUND: Cancer Stem Cells (CSCs) play an important role in various stages of cancer development, advancement, and therapy resistance. Ketoprofen-RGD has been revealed to act as an anti-cancer agent against some tumors. OBJECTIVE: We aimed to explore the effects of a novel Ketoprofen-RGD compound on the suppression of Breast Cancer Stem-like Cells (BCSCs) and their parental cells. METHODS: Mammospheres were developed from MCF-7 cells and assessed by CSC surface markers through flowcytometry. The anti-proliferative and pro-apoptotic activities of Ketoprofen-RGD were measured by MTS assay and flowcytometry. The expression levels of stemness markers and JAK2/STAT proteins were measured by quantitative Real Time-PCR (qRT-PCR) and western blotting, respectively. Intracellular Reactive Oxygen Species (ROS) was measured using a cell permeable, oxidant-sensitive fluorescence probe (carboxy-H2DCFDA). RESULTS: Ketoprofen-RGD significantly reduced the mammosphere formation rate and the expression of three out of six stemness markers and remarkably decreased viability and induced apoptosis of spheroidal and parental cells compared to controls. Further experiments using CD95L, as a death ligand, and ZB4 antibody, as an extrinsic apoptotic pathway blocker, showed that Ketoprofen-RGD induced intrinsic pathway, suggesting a mechanism by which Ketoprofen-RGD triggers apoptosis. ROS production was also another way to induce apoptosis. Results of western blot analysis also revealed a marked diminish in the phosphorylation of JAK2 and STAT proteins. CONCLUSION: Our study, for the first time, elucidated an anti-BCSC activity for Ketoprofen-RGD via declining stemness markers, inducing toxicity, and apoptosis in these cells and parental cells. These findings may suggest this compound as a promising anti-breast cancer.


Assuntos
Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Integrinas/antagonistas & inibidores , Cetoprofeno/química , Oligopeptídeos/química , Sequência de Aminoácidos , Anticorpos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína Ligante Fas/farmacologia , Feminino , Humanos , Janus Quinase 2/metabolismo , Cetoprofeno/farmacologia , Terapia de Alvo Molecular , Células-Tronco Neoplásicas , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
13.
Iran J Pharm Res ; 19(2): 9-21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224207

RESUMO

Drug development is a key point in the research of new therapeutic treatments for increasing maximum drug loading and prolonged drug effect. Encapsulation of drugs into multivesicular liposomes (DepoFoam) is a nanotechnology that allow delivery of the active constituent at a sufficient concentration during the entire treatment period. This guarantees the reduction of drug administration frequency, a very important factor in a prolonged treatment. Currently, diverse DepoFoam drugs are approved for clinical use against neurological diseases and for post-surgical pain management while other are under development for reducing surgical bleeding and for post-surgical analgesia. Also, on pre-clinical trials on cancer DepoFoam can improve bioavailability and stability of the drug molecules minimizing side effects by site-specific targeted delivery. In the current work, available literature on structure, preparation and pharmacokinetics of DepoFoam are reviewed. Moreover, we investigated approved DepoFoam formulations and preclinical studies with this nanotechnology.

14.
Fitoterapia ; 146: 104640, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32474055

RESUMO

Thyroid cancer is the most frequent endocrine malignancy, with more than 500,000 cases per year worldwide. Differentiated thyroid cancers are the most common forms with best prognosis, while poorly/undifferentiated ones are rare (2% of all thyroid cancer), aggressive, frequently metastasize and have a worse prognosis. For aggressive, metastatic and advanced thyroid cancer novel antitumor molecules are urgently needed and phytochemical products can be a rational and extensive source, since secondary plant metabolites can guarantee the necessary biochemical variability for therapeutic purpose. Among bioactive molecules that present biological activity on thyroid cancer, resveratrol, curcumin, isoflavones, glucosinolates are the most common and used in experimental model. Most of them have been studied both in vitro and in vivo on this cancer, but rarely in clinical trial. This review summarizes phytochemicals, phytotherapeutics and plant derived compounds used in thyroid cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos Fitoquímicos/farmacologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Curcumina/farmacologia , Humanos , Isoflavonas/farmacologia , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Quercetina/farmacologia , Resveratrol/farmacologia
15.
Future Oncol ; 16(18): 1301-1319, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32421354

RESUMO

Thyroid cancer, as the most prevalent endocrine malignancy, comprises nearly 1% of all cancers in the world. The metastatic propagation of thyroid cancer is under the control of a number of modulating processes and factors such as signaling pathways and their components, cell division regulators, metabolic reprogramming factors, extracellular matrix remodelers, epithelial to mesenchymal transition modulators, epigenetic mechanisms, hypoxia and cytokines. Identifying the exact molecular mechanisms of these dysregulated processes could help to discover the key targets for therapeutic purposes and utilizing them as diagnostic, prognostic and predictors of the clinical course of patients. In this review article, we describe different aspects of thyroid cancer metastasis by focusing on defective genes and pathways involved in its metastatic spread.


Assuntos
Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Animais , Biomarcadores , Suscetibilidade a Doenças , Metabolismo Energético , Transição Epitelial-Mesenquimal , Matriz Extracelular , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Estadiamento de Neoplasias , Células Neoplásicas Circulantes , Transdução de Sinais , Neoplasias da Glândula Tireoide/etiologia
16.
J Pharm Pharm Sci ; 23(1): 47-57, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32202994

RESUMO

PURPOSE: Cancer stem cells (CSCs) play an important role in various stages of cancer development and therapy refractoriness. 8-Hydroxydaidzein (8-OHD) has revealed anti-cancer activity in different tumors. Accordingly, we aimed to assess the effects of 8-OHD on the suppression of breast cancer stem-like cells (BCSCs). METHODS: The anti-proliferative and pro-apoptotic properties of 8-OHD were examined by MTS assay and flowcytometry. The expression levels of stemness markers and JAK2/STAT proteins were measured by quantitative real time-PCR (qRT-PCR) and western blotting, respectively. RESULTS: 8-OHD significantly decreased three out of six stemness markers and remarkably reduced viability and induced apoptosis of spheroidal and parental cells compared to controls. Further experiments using CD95L, as a death ligand, and ZB4 antibody, as an extrinsic apoptotic pathway blocker, showed that 8-OHD induced apoptosis through the intrinsic pathway, proposing a mechanism by which 8-OHD triggers apoptosis. Results of western blot analysis also revealed a marked decline in the phosphorylation of JAK2 and STAT proteins. CONCLUSION: Our study, for the first time, elucidated an anti-BCSC activity for 8-OHD via decreasing stemness markers, inducing toxicity and stimulating apoptosis in these cells and parental cells. Our results also suggested a novel mechanism by which 8-OHD induces apoptosis in BCSCs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Isoflavonas/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Janus Quinase 2/metabolismo , Células MCF-7 , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fator de Transcrição STAT3/metabolismo
17.
Asian Pac J Cancer Prev ; 21(2): 281-287, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32102500

RESUMO

Thyroid cancer (TC) is the most common cancer of endocrine system. TC can be subdivided into 4 different entities, papillary, follicular, medullary and anaplastic thyroid cancer. Among them, anaplastic thyroid cancer has the poorest prognosis. Exploring new therapeutic approach may entail favorable prediction as well as increasing overall survival rate of patients. Long non-coding RNAs (lncRNAs), have vast implications in different cancer types. Although they are not transcribed into proteins, they can act as a harness in regulating a plethora of biological functions. They have been implicated in a decisive role in gene expression via modulation of both coding and non-coding RNAs. This article discuss the multi-facet role of lncRNA in thyroid cancer biology.
.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Terapia de Alvo Molecular , RNA Longo não Codificante/genética , Neoplasias da Glândula Tireoide/tratamento farmacológico , Humanos , Prognóstico , RNA Longo não Codificante/antagonistas & inibidores , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
18.
Galen Med J ; 9: e1648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34466561

RESUMO

BACKGROUND: Thyroid cancer is more common in women at reproductive age, suggesting the relationship between its high-incidence and therapeutic use of hormonal medications, such as oral contraceptives (OCPs). The aim of this study was to identify the effect of low-dose combined OCP (LD-COC) on proliferation, apoptosis, and migration of human papillary thyroid cancer (PTC) BCPAP cell line. MATERIALS AND METHODS: BCPAP cells were cultured and treated with the combination of 90nM levonorgestrel (LNG) and 20nM ethinylestradiol (EE) for 48 hours. Afterward, using 3-(4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide (MTT) assay, the proliferation of the cells was measured. Apoptosis was determined by using a Caspase-3 ELISA kit. Migratory properties of combined LNG and EE were studied through wound scratch assay. The expression levels of pro-apoptotic factor BAX, anti-apoptotic factor Bcl2, and proliferation marker Ki67 were analyzed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blotting. RESULTS: Upon treatment with the combination of LNG and EE, proliferation and migration of BCPAP cells were significantly enhanced. However, LNG and EE remarkably inhibited apoptosis of these cells. Furthermore, treating PTC cells with combined LNG and EE caused a marked increase in the expression of Bcl2 and Ki67 and a considerable decrease in BAX levels (P˂0.05). CONCLUSION: Our data linked the use of COCs and the progression and aggressiveness of PTC, suggesting the role of these hormonal compounds as promoting factors for PTC tumors. Despite these observations, further investigations will be required to fully establish the pathogenic impact of these medications on PTC.

19.
Biomolecules ; 9(12)2019 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771220

RESUMO

Cancer is the second leading cause of death worldwide. The main modality to fight against cancer is surgery, radiotherapy, and chemotherapy, and more recently targeted therapy, gene therapy and immunotherapy, which play important roles in treating cancer patients. In the last decades, chemotherapy has been well developed. Nonetheless, administration of the drug is not always successful, as limited drug dosage can reach the tumor cells.. In this context, the possibility to use an encapsulated anti-cancer drug may potentially solve the problem. Liposomal cytarabine is a formulation with pronounced effectiveness in lymphomatous meningitis and reduced cardiotoxicity if compared to liposomal anthracyclines. Thus, the future liposomal cytarabine use could be extended to other diseases given its reduction in cytotoxic side effects compared to the free formulation. This review summarizes the chemistry and biology of liposomal cytarabine, with exploration of its clinical implications.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Citarabina/administração & dosagem , Citarabina/química , Lipossomos/química , Neoplasias/tratamento farmacológico , Animais , Composição de Medicamentos , Humanos
20.
Endocrine ; 66(3): 435-455, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31378850

RESUMO

The Metastatic progression of solid tumors, such as thyroid cancer is a complex process which involves various factors. Current understanding on the role of epithelial-mesenchymal transition (EMT) in thyroid carcinomas suggests that EMT is implicated in the progression from follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC) to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid cancer (ATC). According to the literature, the initiation of the EMT program in thyroid epithelial cells elevates the number of stem cells, which contribute to recurrent and metastatic diseases. The EMT process is orchestrated by a complex network of transcription factors, growth factors, signaling cascades, epigenetic modulations, and the tumor milieu. These factors have been shown to be dysregulated in thyroid carcinomas. Therefore, molecular interferences restoring the expression of tumor suppressors, or thwarting overexpressed oncogenes is a hopeful therapeutic method to improve the treatment of progressive diseases. In this review, we summarize the recent findings on EMT in thyroid cancer focusing on the main role-players and regulators of this process in thyroid tumors.


Assuntos
Carcinoma/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias da Glândula Tireoide/metabolismo , Carcinoma/patologia , Epigênese Genética , Humanos , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Fatores de Transcrição/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA