Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Sci Health B ; 59(4): 131-141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314812

RESUMO

Small slaughterhouses generate biowaste, which for economic reasons, is generally destined for composting. Inoculating appropriate microorganisms can improve biodegradation efficiency and mitigate odor generation during the composting process and can give rise to composts with neutral or pleasant odors. Therefore, the aim of this study was to compare the odor intensity reduction of compost generated with and without a formulated inoculum (Saccharomyces cerevisiae, Bacillus subtilis, and Rhodopseudomonas palustris). A set of experimental data was collected and analyzed according to the German "Verein Deutscher Ingenieure" odor protocol. The results showed that adding microorganisms was effective in reducing unpleasant odors in all three composts generated from swine, cattle, and poultry slaughterhouse by-products during both summer and winter seasons. Additionally, soil odor was predominant in composts that were inoculated in the two tested seasons (i.e., summer and winter). On the other hand, composts without inoculation had odors similar to peat for swine compost, ammonia for cattle compost, and manure for poultry compost, regardless of the season tested. Overall, composting process with appropriate inoculum can help in the correct disposal of slaughterhouse wastes by transforming organic matter into composts, which can have economic and environmental value as a soil conditioner and/or fertilizer.


Assuntos
Compostagem , Animais , Bovinos , Suínos , Matadouros , Odorantes/prevenção & controle , Solo , Biodegradação Ambiental , Esterco
2.
Environ Sci Pollut Res Int ; 28(13): 16532-16543, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33387324

RESUMO

The degradation efficiency of the Fenton reaction or ozonolysis (O3) to treat soil contaminated by crude petroleum was studied in association with the sonolysis process. To quantify oxidation efficiency, total organic carbon (TOC) and chemical oxygen demand (COD) were measured, while biochemical oxygen demand (BOD5) was measured to estimate biodegradation potential. TOC removal efficiency ranged from 9 to 52% to the Fenton reaction without sonolysis, and 18% and 78% with sonolysis for reagent concentrations of 1% H2O2-100 mM Fe2+ and 20% H2O2-1 mM Fe2+, respectively. For ozonolysis (after 10 and 60 min of treatment), the reduction in TOC ranged from 9 to 43% without sonolysis and 15 to 61% with sonolysis. The Fenton reaction without sonolysis increased the biodegradability in relation to the non-oxidized sample by 6% (1% H2O2-100 mM Fe2+) and 26% (20% H2O2-1 mM Fe2+), and with sonolysis the corresponding values were 13% and 42%, respectively. The biodegradation potential under ozonolysis without sonolysis increased from 0.18 (10 min of treatment) to 0.38 (30 min of treatment), and with sonolysis these values were 0.26 and 0.58, respectively. Optimization of the remediation processes is essential to determine sequential treatment order and efficiency.


Assuntos
Ozônio , Petróleo , Poluentes Químicos da Água , Peróxido de Hidrogênio , Ferro , Oxirredução , Solo , Poluentes Químicos da Água/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-31924135

RESUMO

The influence of the pH and the contaminant desorption/emulsification on ozone (O3), ozone-hydrogen peroxide (O3/H2O2) and ozone-photolysis (O3/UV) oxidation reactions were performed to treat crude petroleum (CP) contaminated soil and water samples. Oxidation efficiency is also related to both free radicals formation in reaction medium (which is dependent of the pH), and contaminant availability (which is dependent of the compounds solubilization or desorption processes). Thus, batch basic processes of O3/H2O2 or O3/UV were improved with sonication system and surfactant addition. In the case of O3/H2O2 process, the reactions were performed at adjusted (pH = 11) and natural pH (free pH= 4-5). The effectiveness of the improved advanced oxidation processes were evaluated through the time-course analysis of the chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and total organic carbon (TOC) values. For both improved treatment processes, CP-contaminated water samples displayed higher values for TOC removal and BOD5/COD ratios than CP-contaminated soil samples. The O3/H2O2 process provided better results than the O3/UV process regarding degradation efficiency, but the former is associated with higher treatment costs due to H2O2 consumption. Overall, oxidation treatment processes increase their efficiencies when reactions are carried out associated with solubilization and desorption systems promoted by sonication/surfactant action.


Assuntos
Peróxido de Hidrogênio/química , Ozônio/química , Petróleo/análise , Poluentes do Solo/análise , Raios Ultravioleta , Poluentes Químicos da Água/análise , Análise da Demanda Biológica de Oxigênio , Concentração de Íons de Hidrogênio , Modelos Teóricos , Oxirredução , Petróleo/efeitos da radiação , Fotólise , Solo/química , Poluentes do Solo/efeitos da radiação , Poluentes Químicos da Água/efeitos da radiação , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA