Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0301402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39042665

RESUMO

Bees play a pivotal role as pollinators in crops essential for human consumption. However, the global decline in bee populations poses a significant threat to pollination services and food security worldwide. The loss and degradation of habitats due to land use change are primary factors contributing to bee declines, particularly in tropical forests facing high deforestation rates. Here, we evaluate the pollination services provided to crops of watermelon (Citrullus lanatus) and green tomato (Physalis ixocarpa) in three municipalities in the state of Jalisco, Mexico, a place with Tropical Dry Forest, during years 2008, and 2014 to 2017. Both crops are cultivated in the dry season, approximately during the months of November to March. We describe the composition of the pollinator community and their visitation frequency (measured through the number of visits per flower per hour), and we assess the impact of pollinators on plant reproductive success and the level of pollinator dependence for each crop species (measured through the number of flowers that developed into fruits). We also evaluate how the landscape configuration (through the percentage of forest cover and distance to the forest) influences richness and abundance of pollinators (measured as number of species and individuals of pollinators per line of 50 m), and we use the model Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) to map and value the pollination service in both crops. InVEST Crop pollination model is a simulation focuses on wild pollinators providing the pollinator ecosystem service. Our findings indicate that Apis mellifera was the primary pollinator of both crops, one of the few abundant pollinators in the study region during the dry season. In experiments where pollinators were excluded from flowers, watermelon yielded no fruits, while green tomato experienced a 65% reduction in production. In the case of green tomato, fruit set showed a positive correlation with pollinator abundance. A positive association between forest cover and total pollinator abundance was observed in green tomato in 2008, but not in watermelon. Additionally, a positive relationship was observed between the abundance of bees predicted by the InVEST model and the abundance of bees observed in green tomato flowers in 2008. In the study region, green tomato and watermelon rely on pollinators for fruit production, with honeybees (from feral and managed colonies) acting as the primary provider of pollination services for these crops. Consequently, the conservation of natural areas is crucial to provide food and nesting resources for pollinators. By doing so, we can ensure the diversity and abundance of pollinators, which in turn will help secure food security. The findings of this study underscore the critical need for the conservation of natural areas to support pollinator populations. Policymakers should prioritize the protection and restoration of habitats, particularly tropical forests, which are essential for maintaining the diversity and abundance of pollinators.


Assuntos
Citrullus , Produtos Agrícolas , Polinização , Citrullus/fisiologia , Polinização/fisiologia , Animais , México , Abelhas/fisiologia , Flores/fisiologia , Ecossistema , Estações do Ano
2.
Ecol Evol ; 14(6): e11456, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895569

RESUMO

The decline of honey bee populations significantly impacts the human food supply due to poor pollination and yield decreases of essential crop species. Given the reduction of pollinators, research into critical landscape components, such as floral resource availability and land use change, might provide valuable information about the nutritional status and health of honey bee colonies. To address this issue, we examine the effects of landscape factors like agricultural area, urban area, and climatic factors, including maximum temperature, minimum temperature, relative humidity, and precipitation, on honey bee hive populations and nutritional health of 326 honey bee colonies across varying landscapes in Mexico. DNA metabarcoding facilitated the precise identification of pollen from 267 plant species, encompassing 243 genera and 80 families, revealing a primary herb-based diet. Areas characterized by high landscape diversity exhibited greater pollen diversity within the colony. Conversely, colonies situated in regions with higher proportions of agricultural and urban landscapes demonstrated lower bee density. The maximum ambient temperature outside hives positively correlated with pollen diversity, aligning with a simultaneous decrease in bee density. Conversely, higher relative humidity positively influenced both the bee density of the colony and the diversity of foraged pollen. Our national-level study investigated pollen dietary availability and colony size in different habitat types, latitudes, climatic conditions, and varied levels and types of disturbances. This effort was taken to gain a better insight into the mechanisms driving declines in honey bee populations. This study illustrates the need for more biodiverse agricultural landscapes, the preservation of diverse habitats, and the conservation of natural and semi-natural spaces. These measures can help to improve the habitat quality of other bee species, as well as restore essential ecosystem processes, such as pollination and pest control.

3.
Evol Appl ; 17(6): e13738, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919879

RESUMO

The Africanized honey bee, a hybrid of Apis mellifera scutellata from Africa with European subspecies, has been considered an invasive species and a problem for beekeeping. Africanized bees arrived in Mexico in 1986, 30 years after their accidental release in Brazil. Although government programs were implemented for its eradication, Africanized populations persist in Mexico, but precise information on the patterns of genetic introgression and racial ancestry is scarce. We determined maternal and parental racial ancestry of managed and feral honey bees across the five beekeeping regions of Mexico, using mitochondrial (mtDNA, COI-COII intergenic region) and nuclear markers (94 ancestrally informative SNPs), to assess the relationship between beekeeping management, beekeeping region, altitude, and latitude with the distribution of maternal and parental racial ancestry. Results revealed a predominantly African ancestry in the Mexican honey bees, but the proportion varied according to management, beekeeping regions, and latitude. The Mexican honey bees showed 31 haplotypes of four evolutionary lineages (A, M, C, and O). Managed honey bees had mitochondrial and nuclear higher proportions of European ancestry than feral honey bees, which had a higher proportion of African ancestry. Beekeeping regions of lower latitudes had higher proportions of African nuclear ancestry. Managed and feral honey bees showed differences in the proportion of maternal and nuclear racial ancestry. Managed honey bees from the Yucatan Peninsula and feral honey bees had a higher mtDNA than nuclear proportions of African ancestry. Managed honey bees, except those on the Yucatan Peninsula, had a higher nuclear than mtDNA proportion of African ancestry. Our study demonstrates that Africanized honey bee populations are genetically diverse and well established in Mexico, which highlights the limitations of management and government programs to contain the Africanization process and demands the incorporation of this lineage in any breeding program for sustainable beekeeping.

4.
Ann Bot ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722218

RESUMO

BACKGROUND AND AIMS: The majority of the earth's land area is currently occupied by humans. Measuring how terrestrial plants reproduce in these pervasive environments is essential for understanding their long-term viability and their ability to adapt to changing environments. METHODS: We conducted hierarchical and phylogenetically-independent meta-analyses to assess the overall effects of anthropogenic land-use changes on pollination, and male and female fitness in terrestrial plants. KEY RESULTS: We found negative global effects of land use change (i.e., mainly habitat loss and fragmentation) on pollination and on female and male fitness of terrestrial flowering plants. Negative effects were stronger in plants with self-incompatibility (SI) systems and pollinated by invertebrates, regardless of life form and sexual expression. Pollination and female fitness of pollination generalist and specialist plants were similarly negatively affected by land-use change, whereas male fitness of specialist plants showed no effects. CONCLUSIONS: Our findings indicate that angiosperm populations remaining in fragmented habitats negatively affect pollination, and female and male fitness, which will likely decrease the recruitment, survival, and long-term viability of plant populations remaining in fragmented landscapes. We underline the main current gaps of knowledge for future research agendas and call out not only for a decrease in the current rates of land-use changes across the world but also to embark on active restoration efforts to increase the area and connectivity of remaining natural habitats.

5.
PLoS One ; 19(1): e0295258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38206918

RESUMO

Many plant species in high montane ecosystems rely on animal pollination for sexual reproduction, however, our understanding of plant-pollinator interactions in tropical montane habitats is still limited. We compared species diversity and composition of blooming plants and floral visitors, and the structure of plant-floral visitor networks between the Montane Forest and Paramo ecosystems in Costa Rica. We also studied the influence of seasonality on species composition and interaction structure. Given the severe climatic conditions experienced by organisms in habitats above treeline, we expected lower plant and insect richness, as well as less specialized and smaller pollination networks in the Paramo than in Montane Forest where climatic conditions are milder and understory plants are better protected. Accordingly, we found that blooming plants and floral visitor species richness was higher in the Montane Forest than in the Paramo, and in both ecosystems species richness of blooming plants and floral visitors was higher in the rainy season than in the dry season. Interaction networks in the Paramo were smaller and more nested, with lower levels of specialization and modularity than those in the Montane Forest, but there were no seasonal differences within either ecosystem. Beta diversity analyses indicate that differences between ecosystems are likely explained by species turnover, whereas within the Montane Forest differences between seasons are more likely explained by the rewiring of interactions. Results indicate that the decrease in species diversity with elevation affects network structure, increasing nestedness and reducing specialization and modularity.


Assuntos
Ecossistema , Flores , Animais , Estações do Ano , Costa Rica , Plantas , Polinização
6.
Curr Opin Insect Sci ; 60: 101112, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837693

RESUMO

Each fall, millions of monarch butterflies (Danaus plexippus L.) travel from Canada and the United States to overwinter in Mexico and California. In 2022, the IUCN listed migratory monarchs as endangered because of their population decline. The main accepted drivers are widespread use of herbicides, effects of climate, and land use change that causes habitat loss. We analyzed the main actions taken to officially protect the overwintering sites and the migration phenomenon with the establishment of the Monarch Butterfly Biosphere Reserve in 2000. The conservation of the monarch overwintering sites in Mexico is an example of continuous work from their discovery to the present. We highlight the importance of monitoring the areas covered by overwintering monarchs in Mexico. These colonies represent the largest concentrations of monarch populations in the world. In the last 10 years, the average area covered by monarchs was 2.72 ( ± 0.47 SE) hectares.


Assuntos
Borboletas , Animais , Estados Unidos , México , Ecossistema , Clima , Migração Animal
7.
Sci Rep ; 13(1): 1017, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653357

RESUMO

Honey bee decline is currently one of the world's most serious environmental issues, and scientists, governments, and producers have generated interest in understanding its causes and consequences in honey production and food supply. Mexico is one of the world's top honey producers, however, the honey bee population's status has not been documented to date. Based on 32 years of data from beekeeping, we make a country-level assessment of honey bee colony trends in Mexico. We use generalized additive mixed models to measure the associations between the percent change in honey bee hives and the percent change in honey yield per hive in relation to land-use, climate, and socioeconomic conditions. Despite the fact that the average annual yield per hive increased from 1980 to 2012, we detected a significant decline in the percent change in the number of honey bee hives across the time period studied. We also found a relationship between climatic conditions and agricultural land use, with agriculture increases and high temperatures producing a decrease in the percent change in honey yield. We found a relationship between a reduction in the temperature range (the difference between maximum and minimum temperatures) and a decrease in the percent change in the number of hives, while socioeconomic factors related to poverty levels have an impact on the number of hives and honey yields. Although long-term declines in hive numbers are not correlated with poverty levels, socioeconomic factors in states with high and medium poverty levels limit the increase in honey yield per hive. These results provide evidence that land-use changes, unfavorable climatic conditions, political, and socioeconomic factors are partially responsible for the reductions in the percent change in honey bee hives in Mexico.


Assuntos
Agricultura , Mel , Abelhas , Animais , México , Criação de Abelhas , Fatores Socioeconômicos
8.
AoB Plants ; 15(1): plac060, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36654989

RESUMO

Gene flow connects populations and is necessary to sustain effective population sizes, and genetic diversity. In the Lower Central American (LCA) region, the complex topographic and climatic history have produced a wide variety of habitats resulting in high biodiversity. Phylogeographic studies of plants from this area are scarce, and to date none have been conducted on palms. We used SSR and chloroplast DNA (cpDNA) markers to study the genetic diversity and structure of populations of the understory palm Chamaedorea tepejilote in Costa Rica. We found that populations of C. tepejilote have moderate to high nuclear simple sequence repeat (SSR) genetic diversity, likely due to large population sizes and its outcrossing mating system. Habitat loss and fragmentation may have contributed to increased genetic structure within slopes. High-elevation mountain ranges appeared to be a significant barrier for gene flow among populations in the Caribbean and Pacific slopes; however, ranges are permeable through low-elevation passes. In contrast, most populations had a single distinct cpDNA haplotype, supporting the hypothesis of several isolated populations that experienced decline that likely resulted in eroded cytoplasmic genetic diversity within populations. The haplotype network and Bayesian analysis linked populations in the Caribbean and the southern Pacific coast, suggesting that gene flow between Pacific and Caribbean populations may have occurred through the southern extreme of the Talamanca Mountain range in Panama, a colonization pathway not previously suggested for LCA plants. This is one of the first phylogeographic studies conducted on tropical palms in the LCA region and the first in the genus Chamaedorea, which sheds light on possible gene flow and dispersal patterns of C. tepejilote in Costa Rica. Our results also highlight the importance of mountain ranges on shaping gene flow patterns of Neotropical plants.

9.
PLoS One ; 17(11): e0277439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36395193

RESUMO

The term circa situm has been used to describe different conservation strategies within agricultural landscapes. Circa situm conserves planted or remnant species in farmlands, where natural vegetation has been modified through anthropogenic intervention. It has been proposed that trees planted or retained under circa situm conditions may contribute to maintaining genetic diversity, however information on the role of this strategy in preserving genetic diversity is scarce. The aim of this study was to determine the levels of genetic diversity and structure, and mating patterns in planted and unmanaged stands of the tropical fruit tree Spondias purpurea L. in north western Costa Rica. In three localities, we used seven polymorphic microsatellite loci and genotyped 201 adults and 648 seeds from planted and wild stands. We found no differences in genetic diversity among planted and wild stands. Genetic structure analysis revealed that gene flow occurs among planted and wild stands within localities. Clones were present and their diversity and evenness were both high and similar between planted and wild stands. The number of pollen donors per progeny array was low (Nep = 1.01) which resulted in high levels of correlated paternity (rp = 0.9). Asexual seeds were found in 4.6% of the progeny arrays, which had multilocus genotypes that were identical to the maternal trees. Our results show that although planted stands under circa situm conditions can maintain similar levels of genetic diversity than wild stands, the low number of sires and asexual seed formation could threaten the long term persistence of populations.


Assuntos
Anacardiaceae , Árvores , Árvores/genética , Anacardiaceae/genética , Costa Rica , Frutas/genética , Variação Genética , Florestas , Reprodução Assexuada
10.
Glob Chang Biol ; 28(11): 3694-3710, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35243726

RESUMO

Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.


Assuntos
Artrópodes , Animais , Biodiversidade , Mudança Climática , Ecossistema , Folhas de Planta
11.
Ecology ; 103(4): e3639, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35060615

RESUMO

The construction of shelters on plants by arthropods might influence other organisms via changes in colonization, community richness, species composition, and functionality. Arthropods, including beetles, caterpillars, sawflies, spiders, and wasps often interact with host plants via the construction of shelters, building a variety of structures such as leaf ties, tents, rolls, and bags; leaf and stem galls, and hollowed out stems. Such constructs might have both an adaptive value in terms of protection (i.e., serve as shelters) but may also exert a strong influence on terrestrial community diversity in the engineered and neighboring hosts via colonization by secondary occupants. Although different traits of the host plant (e.g., physical, chemical, and architectural features) may affect the potential for ecosystem engineering by insects, such effects have been, to a certain degree, overlooked. Further analyses of how plant traits affect the occurrence of shelters may therefore enrich our understanding of the organizing principles of plant-based communities. This data set includes more than 1000 unique records of ecosystem engineering by arthropods, in the form of structures built on plants. All records have been published in the literature, and span both natural structures (91% of the records) and structures artificially created by researchers (9% of the records). The data were gathered between 1932 and 2021, across more than 50 countries and several ecosystems, ranging from polar to tropical zones. In addition to data on host plants and engineers, we aggregated data on the type of constructs and the identity of inquilines using these structures. This data set highlights the importance of these subtle structures for the organization of terrestrial arthropod communities, enabling hypotheses testing in ecological studies addressing ecosystem engineering and facilitation mediated by constructs. There are no copyright restrictions and please cite this paper when using the data in publications.


Assuntos
Artrópodes , Animais , Biodiversidade , Ecossistema , Insetos , Folhas de Planta , Plantas
12.
Am J Bot ; 108(9): 1793-1807, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34519027

RESUMO

PREMISE: The mechanisms generating the geographical distributions of genetic diversity are a central theme in evolutionary biology. The amount of genetic diversity and its distribution are controlled by several factors, including dispersal abilities, physical barriers, and environmental and climatic changes. We investigated the patterns of genetic diversity and differentiation among populations of the widespread species Brosimum alicastrum in Mexico. METHODS: Using nuclear DNA microsatellite data, we tested whether the genetic structure of B. alicastrum was associated with the roles of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec as geographical barriers to gene flow and to infer the role of past events in the genetic diversity patterns. We further used a maximum-likelihood population-effects mixed model (MLPE) to identify the main factor affecting population differentiation in B. alicastrum. RESULTS: Our results suggested that Mexican B. alicastrum is well differentiated into three main lineages. Patterns of the genetic structure at a finer scale did not fully correspond to the current geographical barriers to gene flow. According to the MLPE mixed model, isolation by distance is the best model for explaining the genetic differentiation of B. alicastrum in Mexico. CONCLUSIONS: We propose that the differentiation patterns might reflect (1) an ancient differentiation that occurred in Central and South America, (2) the effects of past climatic changes, and (3) the functions of some physical barriers to gene flow. This study provides insights into the possible mechanisms underlying the geographic genetic variation of B. alicastrum along a moisture gradient in tropical lowland forests.


Assuntos
Variação Genética , Moraceae , Fluxo Gênico , México , Repetições de Microssatélites/genética
13.
Naturwissenschaften ; 107(5): 45, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001285

RESUMO

Many arthropods modify parts of plants through the construction of domiciles or by consuming plant tissues that, after abandoned, can be used as shelter by other arthropods in a facilitating interaction process. We examined, for the first time, the potential of leaf-rolling mites to indirectly influence arthropod communities in natural forests by providing shelter sites. In early June 2019, we found a high density of leaves of Amphitecna tuxtlensis (Bignoniaceae) rolled by an undetermined leaf-rolling mite species in a tropical rainforest, in Mexico. We tested whether the species richness, abundance, and colonization frequency of arthropods was greater in rolled compared with expanded leaves. We collected 5 rolled leaves and 5 fully expanded leaves from 15 A. tuxtlensis trees (N = 150 sampled leaves) and recorded all arthropods on each leaf. We recorded 1421 arthropods from 67 unique morphospecies. We found 39 individuals from 23 morphospecies of arthropods in expanded leaves, and 1382 individuals from 56 morphospecies in rolled leaves. Ants were the most abundant and frequent group and utilized the rolled leaves mainly as nesting sites; 1260 ant individuals were found in 30 nests from three species. Arthropod species richness, abundance, and colonization frequency were greater in rolled leaves compared with expanded leaves. We concluded that the ecosystem engineering effect of leaf-rolling mites may be an important structuring element for arthropod communities on plants through an increase of high quality food resources and shelter sites for other arthropods, as well as nesting sites for ants.


Assuntos
Artrópodes/fisiologia , Biodiversidade , Ácaros/fisiologia , Folhas de Planta , Animais , Ecossistema , México , Floresta Úmida
14.
Mol Biol Rep ; 47(8): 6385-6391, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32557191

RESUMO

Palms are important components of tropical and subtropical ecosystems and have even been considered keystone plant resources that can support a large array of pollinators and frugivores. Palms are also economically important. Chamaedorea tepejilote Liebm. is a widely distributed palm with important bioeconomic potential for food, traditional medicine and ornamental purposes. Eighteen microsatellite primers were developed for C. tepejilote. Polymorphism and genetic diversity were evaluated in 71 individuals from four populations in Costa Rica. Thirteen loci were polymorphic and the number of alleles in the pooled sample ranged between 5 and 20, the average number of alleles was 10.61. Average observed heterozygosity was Ho = 0.607 ± 0.04 (SD) and the average expected heterozygosity was He = 0.600 ± 0.03. The exclusion probability of the combined 13 loci, was PE = 0.998. We tested transferability of the markers in the congeneric C. costaricana, C. pinnantifrons and C. macrospadix. Dioecious species are common in tropical forests; however, few studies have analyzed gene flow patterns in these species. The markers developed for C. tepejilote are an important tool to quantify gene flow patterns and the distribution of genetic diversity within populations. This information will be useful for the development of conservation and management practices of this dioecious tropical palm species.


Assuntos
Arecaceae/genética , Repetições de Microssatélites , Costa Rica , Ecossistema , Fluxo Gênico , Genes de Plantas , Variação Genética , Heterozigoto , Polimorfismo Genético
15.
Mol Biol Rep ; 47(5): 4003-4007, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32240466

RESUMO

Microsatellite markers are a useful genetic tool to answer ecological and conservation genetics questions. Microsatellite primers were developed and characterized to evaluate forest fragmentation effects on genetic structure, diversity and gene flow patterns in the dioecious tropical tree Astroniumgraveolens (Anacardiaceae). Using genomic library enrichment, sixteen microsatellite loci were developed for A.graveolens. Polymorphism was evaluated in 80 individuals from four localities in Mexico. The overall number of alleles detected was 63, average alleles per locus 3.9 with a range from one to 11 per locus. Cross amplification trails on related species in the Anacardiaceae family: Spondiaspurpurea and Amphipterygiumadstringens, achieved successful amplification for all primers. Microsatellite markers described here are the first to be characterized for A.graveolens. These genetic markers will be a useful tool to assess the genetic consequences of habitat fragmentation and selective logging on A.graveolens populations. Cross amplification success on S.purpureaandA.adstringens suggest that they may be used for population genetic studies in other species within the family.


Assuntos
Anacardiaceae/genética , Repetições de Microssatélites/genética , Alelos , Anacardiaceae/metabolismo , Primers do DNA/genética , DNA de Plantas/genética , Fluxo Gênico/genética , Frequência do Gene/genética , Loci Gênicos/genética , Marcadores Genéticos/genética , Biblioteca Genômica , Genótipo , Heterozigoto , Desequilíbrio de Ligação/genética , México , Polimorfismo Genético/genética , Especificidade da Espécie , Árvores/genética , Árvores/metabolismo
16.
Sci Rep ; 10(1): 4584, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165645

RESUMO

Pollination and seed dispersal patterns determine gene flow within plant populations. In tropical forests, a high proportion of trees are dioecious, insect pollinated and dispersed by vertebrates. Dispersal vectors and density dependent factors may modulate realized gene flow and influence the magnitude of Fine Scale Genetic Structure (FSGS), affecting individual fitness. Spondias purpurea is a vertebrate-dispersed, insect-pollinated dioecious tropical tree. We assessed the influence of sex ratio, effective and realized gene flow on genetic diversity, FSGS and individual fitness within a 30 ha plot in the tropical dry forest reserve of Chamela-Cuixmala, Mexico. All individuals within the plot were tagged, geo-referenced and sampled for genetic analysis. We measured dbh and monitored sex expression during two reproductive seasons for all individuals. We collected seeds directly from maternal trees for effective pollen dispersal analysis, and analyzed established seedlings to assess realized pollen and seed dispersal. Nine microsatellite loci were used to describe genetic diversity parameters, FSGS and gene flow patterns among different size classes. A total of 354 individuals were located and classified into three size classes based on their dbh (<10, 10-20, and >20 cm). Population sex ratios were male biased and diametric size distributions differed among sexes, these differences may be the result of precocious male reproduction at early stages. Autocorrelation analyses indicate low FSGS (Fj <0.07) across all size classes. Long realized pollen and seed dispersal and differences among effective and realized gene flow were detected. In our study site low FSGS is associated with high gene flow levels. Effective and realized gene flow indicate a population recruitment curve indicating Janzen-Connell effects and suggesting fitness advantages for long-distance pollen and seed dispersal events.


Assuntos
Anacardiaceae/fisiologia , Fluxo Gênico , Repetições de Microssatélites , Análise de Sequência de DNA/métodos , Anacardiaceae/genética , DNA de Plantas/genética , Aptidão Genética , Variação Genética , México , Polinização , Sementes/fisiologia , Clima Tropical
17.
Insects ; 10(8)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443212

RESUMO

Insect-aroid interaction studies have focused largely on pollination systems; however, few report trophic interactions with other herbivores. This study features the endophagous insect community in reproductive aroid structures of a tropical rainforest of Mexico, and the shifting that occurs along an altitudinal gradient and among different hosts. In three sites of the Los Tuxtlas Biosphere Reserve in Mexico, we surveyed eight aroid species over a yearly cycle. The insects found were reared in the laboratory, quantified and identified. Data were analyzed through species interaction networks. We recorded 34 endophagous species from 21 families belonging to four insect orders. The community was highly specialized at both network and species levels. Along the altitudinal gradient, there was a reduction in richness and a high turnover of species, while the assemblage among hosts was also highly specific, with different dominant species. Our findings suggest that intrinsic plant factors could influence their occupation, and that the coexistence of distinct insect species in the assemblage could exert a direct or indirect influence on their ability to colonize such resources.

18.
Mol Biol Rep ; 46(5): 5581-5585, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31321644

RESUMO

Microsatellite markers provide high polymorphism levels, useful to study genetic diversity and gene flow patterns in plant populations. Here we develop and characterize microsatellite primers to evaluate patterns of genetic structure and diversity, and gene flow levels in the dioecious tropical tree Spondias purpurea (Anacardiaceae). Twenty-four microsatellite primers were developed for Spondias purpurea. Polymorphism was evaluated in 139 individuals from three localities in Mexico. Ten loci were polymorphic. The number of alleles ranged between two and 21, the average number of alleles was 5.88. Cross-amplification trials on S. mombin, S. radlkoferi, Astronium graveolens and Amphipterygium adstringens achieved successful amplification for only six microsatellites in S. mombin and S. radlkoferi. Microsatellites developed for S. purpurea will be a useful tool to estimate genetic diversity within and among populations, as well as to assess the consequences of habitat fragmentation on gene flow patterns of this species.


Assuntos
Anacardiaceae/genética , Repetições de Microssatélites/genética , Alelos , Animais , Primers do DNA/genética , DNA de Plantas/genética , Fluxo Gênico/genética , Loci Gênicos/genética , Heterozigoto , Desequilíbrio de Ligação/genética , México , Polimorfismo Genético/genética , Especificidade da Espécie , Árvores/genética
19.
Ecology ; 100(10): e02803, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31240696

RESUMO

Network analysis is a powerful tool to understand community-level plant-pollinator interactions. We evaluated the role of floral visitors on plant fitness through a series of pollination exclusion experiments to test the effectiveness of pollinators of an Ipomoea community in the Pacific coast of Mexico, including: (1) all flower visitors, (2) visitors that contact the reproductive organs, (3) visitors that deposit pollen on stigmas, and (4) visitors that mediate fruit and seed production. Our results show that networks built from effective pollination interactions are smaller, less connected, more specialized and modular than floral visitor networks. Modules are associated with pollinator functional groups and they provide strong support for pollination syndromes only when non-effective interactions are excluded. In contrast to other studies, the analyzed networks are not nested. Our results also show that only 59% of floral visitors were legitimate pollinators that contribute to seed production. Furthermore, only 27% of the links in visitation network resulted in seed production. Our study shows that plant-pollination networks that consider effectiveness measures of pollination in addition to floral visitation provide insightful information about the different role floral visitors play in a community, encompassing a large number of commensalistic/antagonistic interactions and the more restricted set of mutualistic relationships that underlie the evolution of convergent floral phenotypes in plants.


Assuntos
Flores , Polinização , México , Plantas , Pólen
20.
J Insect Sci ; 19(3)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31234211

RESUMO

Evolution and radiation between insects and flowering plants are both opportunistic and obligatory when the former feeds on the reproductive structures of the latter, whereas direct and indirect effects can influence the fitness of individuals, populations, and plant communities. The Araceae family constitutes an important element of the tropical rainforest of the Neotropics, and its morphology and floral biology provide a remarkable system for studying trophic interactions with insects, including the Richardiidae flies (Diptera). We studied the trophic interactions of the aroid-fly system, assessing infestation rates under natural conditions over an annual cycle. In the Neotropical region, we discovered for the first time that seven aroid species became infested by four richardiid species: Beebeomyia tuxtlaensis Hernández-Ortiz and Aguirre with Dieffenbachia oerstedii Schott and D. wendlandii Schott; B. palposa (Cresson) with Xanthosoma robustum Schott; Beebeomyia sp.3. in association with Philodendron radiatum Schott, P. tripartitum (Jacq.) Schott, and P. sagittifolium Liebm.; while Sepsisoma sp. only infested Rhodospatha wendlandii Schott. Infestation rates differed significantly among hosts, but comparisons with morphological traits did not provide evidence of a causal factor of the infestation. In contrast, larval density and time of development both exhibited significant differences between hosts. The findings suggest the high specialization of the flies, and that intrinsic factors of the plants, such as the presence of secondary metabolites and their maturation periods, may influence their infestation rates.


Assuntos
Araceae , Dípteros , Animais , Comportamento Alimentar , Frutas , Larva , México , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA