Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Amino Acids ; 47(8): 1533-48, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25940922

RESUMO

Taurine (Tau) regulates ß-cell function and glucose homeostasis under normal and diabetic conditions. Here, we assessed the effects of Tau supplementation upon glucose homeostasis and the morphophysiology of endocrine pancreas, in leptin-deficient obese (ob) mice. From weaning until 90-day-old, C57Bl/6 and ob mice received, or not, 5% Tau in drinking water (C, CT, ob and obT). Obese mice were hyperglycemic, glucose intolerant, insulin resistant, and exhibited higher hepatic glucose output. Tau supplementation did not prevent obesity, but ameliorated glucose homeostasis in obT. Islets from ob mice presented a higher glucose-induced intracellular Ca(2+) influx, NAD(P)H production and insulin release. Furthermore, α-cells from ob islets displayed a higher oscillatory Ca(2+) profile at low glucose concentrations, in association with glucagon hypersecretion. In Tau-supplemented ob mice, insulin and glucagon secretion was attenuated, while Ca(2+) influx tended to be normalized in ß-cells and Ca(2+) oscillations were increased in α-cells. Tau normalized the inhibitory action of somatostatin (SST) upon insulin release in the obT group. In these islets, expression of the glucagon, GLUT-2 and TRPM5 genes was also restored. Tau also enhanced MafA, Ngn3 and NeuroD mRNA levels in obT islets. Morphometric analysis demonstrated that the hypertrophy of ob islets tends to be normalized by Tau with reductions in islet and ß-cell masses, but enhanced δ-cell mass in obT. Our results indicate that Tau improves glucose homeostasis, regulating ß-, α-, and δ-cell morphophysiology in ob mice, indicating that Tau may be a potential therapeutic tool for the preservation of endocrine pancreatic function in obesity and diabetes.


Assuntos
Suplementos Nutricionais , Glucagon/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Taurina/administração & dosagem , Taurina/metabolismo , Animais , Glicemia/metabolismo , Cálcio/metabolismo , Homeostase/efeitos dos fármacos , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Taurina/sangue
2.
PLoS One ; 9(4): e93531, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24705399

RESUMO

Glucocorticoid (GC)-based therapies can cause insulin resistance (IR), glucose intolerance, hyperglycemia and, occasionally, overt diabetes. Understanding the mechanisms behind these metabolic disorders could improve the management of glucose homeostasis in patients undergoing GC treatment. For this purpose, adult rats were treated with a daily injection of dexamethasone (1 mg/kg b.w., i.p.) (DEX) or saline as a control for 5 consecutive days. The DEX rats developed IR, augmented glycemia, hyperinsulinemia and hyperglucagonemia. Treatment of the DEX rats with a glucagon receptor antagonist normalized their blood glucose level. The characteristic inhibitory effect of glucose on glucagon secretion was impaired in the islets of the DEX rats, while no direct effects were found on α-cells in islets that were incubated with DEX in vitro. A higher proportion of docked secretory granules was found in the DEX α-cells as well as a trend towards increased α-cell mass. Additionally, insulin secretion in the presence of glucagon was augmented in the islets of the DEX rats, which was most likely due to their higher glucagon receptor content. We also found that the enzyme 11ßHSD-1, which participates in GC metabolism, contributed to the insulin hypersecretion in the DEX rats under basal glucose conditions. Altogether, we showed that GC treatment induces hyperglucagonemia, which contributes to an imbalance in glucose homeostasis and compensatory ß-cell hypersecretion. This hyperglucagonemia may result from altered α-cell function and, likely, α-cell mass. Additionally, blockage of the glucagon receptor seems to be effective in preventing the elevation in blood glucose levels induced by GC administration.


Assuntos
Glicemia/efeitos dos fármacos , Dexametasona/efeitos adversos , Células Secretoras de Glucagon/fisiologia , Glucocorticoides/efeitos adversos , Homeostase/efeitos dos fármacos , Hiperinsulinismo/induzido quimicamente , Insulina/metabolismo , Animais , Glicemia/metabolismo , Células Cultivadas , Dexametasona/administração & dosagem , Esquema de Medicação , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/patologia , Glucocorticoides/administração & dosagem , Hiperinsulinismo/sangue , Injeções Intraperitoneais , Resistência à Insulina , Secreção de Insulina , Masculino , Ratos , Ratos Wistar
3.
PLoS One ; 7(3): e33814, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470480

RESUMO

Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor ß subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr(308) residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor ß subunit.In conclusion, short-term treatment with low doses of BPA slows down whole body energy metabolism and disrupts insulin signaling in peripheral tissues. Thus, our findings support the notion that BPA can be considered a risk factor for the development of type 2 diabetes.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Estrogênios não Esteroides/toxicidade , Fenóis/toxicidade , Animais , Compostos Benzidrílicos , Glucose/metabolismo , Injeções Subcutâneas , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Math Biosci Eng ; 7(4): 793-807, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21077708

RESUMO

Pancreatic alpha cells synthesize and release glucagon. This hormone along with insulin, preserves blood glucose levels within a physiological range. During low glucose levels, alpha cells exhibit electrical activity related to glucagon secretion. In this paper, we introduce minimal state models for those ionic channels involved in this electrical activity in mice alpha cells. For estimation of model parameters, we use Monte Carlo algorithms to fit steady-state channel currents. Then, we simulate dynamic ionic currents following experimental protocols. Our aims are 1) To understand the individual ionic channel functioning and modulation that could affect glucagon secretion, and 2) To simulate ionic currents actually measured in voltage-clamp alpha-cell experiments in mice. Our estimations indicate that alpha cells are highly permeable to sodium and potassium which mainly manage action potentials. We have also found that our estimated N-type calcium channel population and density in alpha cells is in good agreement to those reported for L-type calcium channels in beta cells. This finding is strongly relevant since both, L-type and N-type calcium channels, play a main role in insulin and glucagon secretion, respectively.


Assuntos
Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Canais Iônicos/fisiologia , Modelos Biológicos , Potenciais de Ação/fisiologia , Animais , Simulação por Computador , Glucagon/fisiologia , Células Secretoras de Glucagon/fisiologia , Glucose/fisiologia , Insulina/metabolismo , Secreção de Insulina , Camundongos , Método de Monte Carlo , Pâncreas/metabolismo
5.
Metabolism ; 59(5): 635-44, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19913855

RESUMO

A regimen of low-protein diet induces a reduction of pancreatic islet function that is associated with development of metabolic disorders including diabetes and obesity afterward. In the present study, the influence of leucine supplementation on metabolic parameters, insulin secretion to glucose and to amino acids, as well as the levels of proteins that participate in the phosphatidylinositol 3-phosphate kinase (PI3K) pathway was investigated in malnourished rats. Four groups were fed with different diets for 12 weeks: a normal protein diet (17%) without (NP) or with leucine supplementation (NPL) or a low (6%)-protein diet without (LP) or with leucine supplementation (LPL). Leucine was given in the drinking water during the last 4 weeks. As indicated by the intraperitoneal glucose tolerance test, LPL rats exhibited increased glucose tolerance as compared with NPL group. Both NPL and LPL rats had higher circulating insulin levels than controls. The LPL rats also showed increased insulin secretion by pancreatic islets in response to glucose or arginine compared with those observed in islets from LP animals. Glucose oxidation was significantly reduced in NPL, LP, and LPL isolated islets as compared with NP; but no alteration was observed for leucine and glutamate oxidation among the 4 groups. Western blotting analysis demonstrated increased PI3K and mammalian target protein of rapamycin protein contents in LPL compared with LP islets. A significant increase in insulin-induced insulin receptor substrate 1-associated PI3K activation was also observed in LPL compared with LP islets. These findings indicate that leucine supplementation can augment islet function in malnourished rats and that activation of the PI3K/mammalian target protein of rapamycin pathway may play a role in this process.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Leucina/administração & dosagem , Desnutrição/metabolismo , Animais , Proteínas Sanguíneas/metabolismo , Peso Corporal , Diabetes Mellitus Tipo 2/tratamento farmacológico , Suplementos Nutricionais , Teste de Tolerância a Glucose , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Desnutrição/tratamento farmacológico , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA/química , RNA/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR
6.
Metabolism ; 59(6): 911-3, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20015523

RESUMO

Low-protein diet impairs insulin secretion in response to nutrients and may induce several metabolic disorders including diabetes, obesity, and cardiovascular disease. In the present study, the influence of leucine supplementation on glutamate dehydrogenase (GDH) expression and glucose-induced insulin secretion (GIIS) was investigated in malnourished rats. Four groups were fed with different diets for 12 weeks: a normal-protein diet (17%) without or with leucine supplementation or a low (6%)-protein diet without (LP) or with leucine supplementation (LPL). Leucine (1.5%) was supplied in the drinking water. Western blotting analysis revealed reduced GDH expression in LP, whereas LPL displayed improved GDH expression, similar to control. The GIIS and leucine-induced insulin release were also enhanced in LPL compared with LP and similar to those observed in rats fed a normal-protein diet without leucine supplementation. In addition, GDH allosteric activators produced an increased insulin secretion in LPL. These findings indicate that leucine supplementation was able to increase GDH expression leading to GIIS restoration, probably by improved leucine metabolic pathways.


Assuntos
Glucose/farmacologia , Glutamato Desidrogenase/biossíntese , Insulina/metabolismo , Leucina/uso terapêutico , Desnutrição Proteico-Calórica/tratamento farmacológico , Desnutrição Proteico-Calórica/metabolismo , Animais , Western Blotting , Glutamato Desidrogenase/genética , Técnicas In Vitro , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Desnutrição Proteico-Calórica/enzimologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA