Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 12(24): 5710-5715, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34128659

RESUMO

A nodal-line semimetal (NLSM) is suppressed in the presence of spin-orbit coupling unless it is protected by a nonsymmorphic symmetry. We show that two-dimensional (2D) materials can realize robust NLSMs when vacancies are introduced on the lattice. As a case study we investigate borophene, a boron honeycomb-like sheet. While the Dirac cones of pristine borophene are shown to be gapped out by spin-orbit coupling and by magnetic exchange, robust nodal lines (NLs) emerge in the spectrum when selected atoms are removed. We propose an effective 2D model and a symmetry analysis to demonstrate that these NLs are topological and protected by a nonsymmorphic glide plane. Our findings offer a paradigm shift to the design of NLSMs: instead of searching for nonsymmorphic materials, robust NLSMs may be realized simply by removing atoms from ordinary symmorphic crystals.

2.
Nanoscale ; 10(10): 4807-4815, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29469923

RESUMO

Monolayers of transition metal dichalcogenides (TMD) are promising materials for optoelectronics devices. However, one of the challenges is to fabricate large-scale growth of high quality TMD monolayers with the desired properties in order to expand their use in potential applications. Here, we demonstrate large-scale tungsten disulfide (WS2) monolayers grown by van der Waals Epitaxy (VdWE). We show that, in addition to the large structural uniformity and homogeneity of these samples, their optical properties are very sensitive to laser irradiation. We observe a time instability in the photoluminescence (PL) emission at low temperatures in the scale of seconds to minutes. Interestingly, this change of the PL spectra with time, which is due to laser induced carrier doping, is employed to successfully distinguish the emission of two negatively charged bright excitons. Furthermore, we also detect blinking sharp bound exciton emissions which are usually attractive for single photon sources. Our findings contribute to a deeper understanding of this complex carrier dynamics induced by laser irradiation which is very important for future optoelectronic devices based on large scale TMD monolayers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA