Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39339845

RESUMO

The pathophysiological mechanisms of the post-acute sequelae of COVID-19 (PASC) remain unclear. Sex differences not only exist in the disease severity of acute SARS-CoV-2 infection but also in the risk of suffering from PASC. Women have a higher risk of suffering from PASC and a longer time to resolution than men. To explore the possible immune mechanisms of PASC among non-elderly females, we mined single-cell transcriptome data from peripheral blood samples of non-elderly female patients with PASC and acute SARS-CoV-2 infection, together with age- and gender-matched non-PASC and healthy controls available from the Gene Expression Omnibus database. By comparing the differences, we found that a CD14+ monocyte subset characterized by higher expression of signal transducers and activators of transcription 2 (STAT2) (CD14+STAT2high) was notably increased in the PASC patients compared with the non-PASC individuals. The transcriptional factor (TF) activity analysis revealed that STAT2 and IRF9 were the key TFs determining the function of CD14+STAT2high monocytes. STAT2 and IRF9 are TFs exclusively involving type I and III interferon (IFN) signaling pathways, resulting in uncontrolled IFN-I signaling activation and type I interferonopathy. Furthermore, increased expression of common interferon-stimulated genes (ISGs) has also been identified in most monocyte subsets among the non-elderly female PASC patients, including IFI6, IFITM3, IFI44L, IFI44, EPSTI1, ISG15, and MX1. This study reveals a featured CD14+STAT2high monocyte associated with uncontrolled IFN-I signaling activation, which is indicative of a possible type I interferonopathy in the non-elderly female patients with PASC.


Assuntos
COVID-19 , Interferon Tipo I , Monócitos , SARS-CoV-2 , Humanos , Feminino , COVID-19/imunologia , COVID-19/virologia , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , SARS-CoV-2/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Fator de Transcrição STAT2/metabolismo , Fator de Transcrição STAT2/genética , Síndrome de COVID-19 Pós-Aguda , Adulto , Receptores de Lipopolissacarídeos , Transcriptoma , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Pessoa de Meia-Idade , Transdução de Sinais , Fator Gênico 3 Estimulado por Interferon, Subunidade gama
2.
Cell Mol Life Sci ; 81(1): 405, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284944

RESUMO

Emerging evidence indicates that activation of complement system leading to the formation of the membrane attack complex (MAC) plays a detrimental role in COVID-19. However, their pathogenic roles have never been experimentally investigated before. We used three knock out mice strains (1. C3-/-; 2. C7-/-; and 3. Cd59ab-/-) to evaluate the role of complement in severe COVID-19 pathogenesis. C3 deficient mice lack a key common component of all three complement activation pathways and are unable to generate C3 and C5 convertases. C7 deficient mice lack a complement protein needed for MAC formation. Cd59ab deficient mice lack an important inhibitor of MAC formation. We also used anti-C5 antibody to block and evaluate the therapeutic potential of inhibiting MAC formation. We demonstrate that inhibition of complement activation (in C3-/-) and MAC formation (in C3-/-. C7-/-, and anti-C5 antibody) attenuates severe COVID-19; whereas enhancement of MAC formation (Cd59ab-/-) accelerates severe COVID-19. The degree of MAC but not C3 deposits in the lungs of C3-/-, C7-/- mice, and Cd59ab-/- mice as compared to their control mice is associated with the attenuation or acceleration of SARS-CoV-2-induced disease. Further, the lack of terminal complement activation for the formation of MAC in C7 deficient mice protects endothelial dysfunction, which is associated with the attenuation of diseases and pathologic changes. Our results demonstrated the causative effect of MAC in severe COVID-19 and indicate a potential avenue for modulating the complement system and MAC formation in the treatment of severe COVID-19.


Assuntos
Antígenos CD59 , COVID-19 , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento , Camundongos Knockout , SARS-CoV-2 , Animais , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Ativação do Complemento/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Camundongos , SARS-CoV-2/imunologia , Antígenos CD59/metabolismo , Antígenos CD59/genética , Antígenos CD59/imunologia , Complemento C3/imunologia , Complemento C3/metabolismo , Complemento C3/genética , Camundongos Endogâmicos C57BL , Humanos , Complemento C5/imunologia , Complemento C5/metabolismo , Complemento C5/antagonistas & inibidores , Modelos Animais de Doenças
3.
Commun Biol ; 7(1): 1162, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289468

RESUMO

Toll-like receptor 7 (Tlr7) deficiency-accelerated severe COVID-19 is associated with reduced production of interferons (IFNs). However, the underlying mechanisms remain elusive. To address these questions, we utilize Tlr7 and Irf7 deficiency mice, single-cell RNA analysis together with bone marrow transplantation approaches. We demonstrate that at the early phase of infection, SARS-CoV-2 causes the upregulation of Tlr7, Irf7, and IFN pathways in the lungs of the infected mice. The deficiency of Tlr7 and Irf7 globally and/or in immune cells in mice increases the severity of COVID-19 via impaired IFN activation in both immune and/or non-immune cells, leading to increased lung viral loads. These effects are associated with reduced IFN alpha and gamma levels in the circulation. The deficiency of Tlr7 tends to cause the reduced production and nuclear translocation of interferon regulatory factor 7 (IRF7) in the lungs of the infected mice, indicative of reduced IRF7 activation. Despite higher amounts of lung viral antigen, Tlr7 or Irf7 deficiency resulted in substantially reduced production of antibodies against SARS-CoV-2, thereby delaying the viral clearance. These results highlight the importance of the activation of TLR7 and IRF7 leading to IFN production on the development of innate and adaptive immunity against COVID-19.


Assuntos
COVID-19 , Fator Regulador 7 de Interferon , Pulmão , Camundongos Knockout , SARS-CoV-2 , Receptor 7 Toll-Like , Animais , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , COVID-19/imunologia , COVID-19/virologia , COVID-19/metabolismo , Camundongos , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Pulmão/imunologia , Pulmão/virologia , Pulmão/metabolismo , Interferons/metabolismo , Camundongos Endogâmicos C57BL , Índice de Gravidade de Doença , Carga Viral , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Animais de Doenças
4.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39201388

RESUMO

HIV-induced persistent immune activation is a key mediator of inflammatory comorbidities such as cardiovascular disease (CVD) and neurocognitive disorders. While a preponderance of data indicate that gut barrier disruption and microbial translocation are drivers of chronic immune activation, the molecular mechanisms of this persistent inflammatory state remain poorly understood. Here, utilizing the nonhuman primate model of Human Immunodeficiency Virus (HIV) infection with suppressive antiretroviral therapy (ART), we investigated activation of inflammasome pathways and their association with intestinal epithelial barrier disruption (IEBD). Longitudinal blood samples obtained from rhesus macaques with chronic SIV infection and long-term suppressive ART were evaluated for IEBD biomarkers, inflammasome activation (IL-1ß and IL-18), inflammatory cytokines, and triglyceride (TG) levels. Activated monocyte subpopulations and glycolytic potential were investigated in peripheral blood mononuclear cells (PBMCs). During the chronic phase of treated SIV infection, elevated levels of plasma IL-1ß and IL-18 were observed following the hallmark increase in IEBD biomarkers, intestinal fatty acid-binding protein (IFABP) and LPS-binding protein (LBP). Further, significant correlations of plasma IFABP levels with IL-1ß and IL-18 were observed between 10 and 12 months of ART. Higher levels of sCD14, IL-6, and GM-CSF, among other inflammatory mediators, were also observed only during the long-term SIV + ART phase along with a trend of increase in the frequencies of activated CD14+CD16+ intermediate monocyte subpopulations. Lastly, we found elevated levels of blood TG and higher glycolytic capacity in PBMCs of chronic SIV-infected macaques with long-term ART. The increase in circulating IL-18 and IL-1ß following IEBD and their significant positive correlation with IFABP suggest a connection between gut barrier disruption and inflammasome activation during chronic SIV infection, despite viral suppression with ART. Additionally, the increase in markers of monocyte activation, along with elevated TG and enhanced glycolytic pathway activity, indicates metabolic remodeling that could fuel metabolic syndrome. Further research is needed to understand the mechanisms by which gut dysfunction and inflammasome activation contribute to HIV-associated metabolic complications, enabling targeted interventions in people with HIV.


Assuntos
Interleucina-18 , Interleucina-1beta , Mucosa Intestinal , Macaca mulatta , Monócitos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Interleucina-18/sangue , Interleucina-18/metabolismo , Monócitos/metabolismo , Monócitos/imunologia , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Mucosa Intestinal/metabolismo , Antirretrovirais/uso terapêutico , Inflamassomos/metabolismo , Biomarcadores/sangue , Masculino , Leucócitos Mononucleares/metabolismo , Doença Crônica
5.
Cogn Neurodyn ; 18(1): 147-164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39170600

RESUMO

Brain-machine interface (BMI) can convert electroencephalography signals (EEGs) into the control instructions of external devices, and the key of control performance is the accuracy and efficiency of decoder. However, the performance of different decoders obtaining control instructions from complex and variable EEG signals is very different and irregular in the different neural information transfer model. Aiming at this problem, the off-line and on-line performance of eight decoders based on the improved single-joint information transmission (SJIT) model is compared and analyzed in this paper, which can provide a theoretical guidance for decoder design. Firstly, in order to avoid the different types of neural activities in the decoding process on the decoder performance, eight decoders based on the improved SJIT model are designed. And then the off-line decoding performance of these decoders is tested and compared. Secondly, a closed-loop BMI system which combining by the designed decoder and the random forest encoder based on the improved SJIT model is constructed. Finally, based on the constructed closed-loop BMI system, the on-line decoding performance of decoders is compared and analyzed. The results show that the LSTM-based decoder has better on-line decoding performance than others in the improved SJIT model.

6.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948748

RESUMO

HIV-induced persistent immune activation is a key mediator of inflammatory comorbidities such as cardiovascular disease (CVD) and neurocognitive disorders. While a preponderance of data indicate that gut barrier disruption and microbial translocation are drivers of chronic immune activation, the molecular mechanisms of this persistent inflammatory state remain poorly understood. Here, utilizing the nonhuman primate model of HIV infection with suppressive antiretroviral therapy (ART), we investigated activation of inflammasome pathways and their association with intestinal epithelial barrier disruption and CVD pathogenesis. Longitudinal blood samples obtained from rhesus macaques with chronic SIV infection and long-term suppressive ART were evaluated for biomarkers of intestinal epithelial barrier disruption (IEBD), inflammasome activation (IL-1ß and IL-18), inflammatory cytokines, and triglyceride (TG) levels. Activated monocyte subpopulations and glycolytic potential were investigated in peripheral blood mononuclear cells (PBMCs). Higher plasma levels of IL-1ß and IL-18 were observed following the hallmark increase in IEBD biomarkers, intestinal fatty acid-binding protein (IFABP) and LPS-binding protein (LBP), during the chronic phase of treated SIV infection. Further, significant correlations of plasma IFABP levels with IL-1ß and IL-18 were observed between 10-12 months of ART. Higher levels of sCD14, IL-6, and GM-CSF, among other inflammatory mediators, were also observed only during the long-term SIV+ART phase along with a trend of increase in frequencies of activated CD14 + CD16 + intermediate monocyte subpopulations. Lastly, we found elevated levels of blood TG and higher glycolytic capacity in PBMCs of chronic SIV-infected macaques with long-term ART. The increase in circulating IL-18 and IL-1ß following IEBD and their significant positive correlation with IFABP suggest a connection between gut barrier disruption and inflammasome activation during chronic SIV infection, despite viral suppression with ART. Additionally, the increase in markers of monocyte activation, along with elevated TG and enhanced glycolytic pathway activity, indicates metabolic remodeling that could accelerate CVD pathogenesis. Further research is needed to understand mechanisms by which gut dysfunction and inflammasome activation contribute to HIV-associated CVD and metabolic complications, enabling targeted interventions in people with HIV.

7.
Environ Health (Wash) ; 2(7): 474-485, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39049897

RESUMO

Computational modeling has emerged as a time-saving and cost-effective alternative to traditional animal testing for assessing chemicals for their potential hazards. However, few computational modeling studies for immunotoxicity were reported, with few models available for predicting toxicants due to the lack of training data and the complex mechanisms of immunotoxicity. In this study, we employed a data-driven quantitative structure-activity relationship (QSAR) modeling workflow to extensively enlarge the limited training data by revealing multiple targets involved in immunotoxicity. To this end, a probe data set of 6,341 chemicals was obtained from a high-throughput screening (HTS) assay testing for the activation of the aryl hydrocarbon receptor (AhR) signaling pathway, a key event leading to immunotoxicity. Searching this probe data set against PubChem yielded 3,183 assays with testing results for varying proportions of these 6,341 compounds. 100 assays were selected to develop QSAR models based on their correlations to AhR agonism. Twelve individual QSAR models were built for each assay using combinations of four machine-learning algorithms and three molecular fingerprints. 5-fold cross-validation of the resulting models showed good predictivity (average CCR = 0.73). A total of 20 assays were further selected based on QSAR model performance, and their resulting QSAR models showed good predictivity of potential immunotoxicants from external chemicals. This study provides a computational modeling strategy that can utilize large public toxicity data sets for modeling immunotoxicity and other toxicity endpoints, which have limited training data and complicated toxicity mechanisms.

8.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167322, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38942338

RESUMO

Obesity is a risk factor for developing severe COVID-19. However, the mechanism underlying obesity-accelerated COVID-19 remains unclear. Here, we report results from a study in which 2-3-month-old K18-hACE2 (K18) mice were fed a western high-fat diet (WD) or normal chow (NC) over 3 months before intranasal infection with a sublethal dose of SARS-CoV2 WA1 (a strain ancestral to the Wuhan variant). After infection, the WD-fed K18 mice lost significantly more body weight and had more severe lung inflammation than normal chow (NC)-fed mice. Bulk RNA-seq analysis of lungs and adipose tissue revealed a diverse landscape of various immune cells, inflammatory markers, and pathways upregulated in the infected WD-fed K18 mice when compared with the infected NC-fed control mice. The transcript levels of IL-6, an important marker of COVID-19 disease severity, were upregulated in the lung at 6-9 days post-infection in the WD-fed mice when compared to NC-fed mice. Transcriptome analysis of the lung and adipose tissue obtained from deceased COVID-19 patients found that the obese patients had an increase in the expression of genes and the activation of pathways associated with inflammation as compared to normal-weight patients (n = 2). The K18 mouse model and human COVID-19 patient data support a link between inflammation and an obesity-accelerated COVID-19 disease phenotype. These results also indicate that obesity-accelerated severe COVID-19 caused by SARS-CoV-2 WA1 infection in the K18 mouse model would be a suitable model for dissecting the cellular and molecular mechanisms underlying pathogenesis.


Assuntos
COVID-19 , Pulmão , Obesidade , SARS-CoV-2 , Regulação para Cima , COVID-19/genética , COVID-19/virologia , COVID-19/metabolismo , COVID-19/patologia , Animais , Obesidade/genética , Obesidade/metabolismo , Obesidade/complicações , Camundongos , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Dieta Hiperlipídica/efeitos adversos , Inflamação/genética , Inflamação/patologia , Inflamação/metabolismo , Modelos Animais de Doenças , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Índice de Gravidade de Doença , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo
9.
Cell Death Discov ; 10(1): 229, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740765

RESUMO

Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1ß and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1ß-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.

10.
Viruses ; 16(4)2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675952

RESUMO

This study investigates the roles of T, B, and Natural Killer (NK) cells in the pathogenesis of severe COVID-19, utilizing mouse-adapted SARS-CoV-2-MA30 (MA30). To evaluate this MA30 mouse model, we characterized MA30-infected C57BL/6 mice (B6) and compared them with SARS-CoV-2-WA1 (an original SARS-CoV-2 strain) infected K18-human ACE2 (K18-hACE2) mice. We found that the infected B6 mice developed severe peribronchial inflammation and rapid severe pulmonary edema, but less lung interstitial inflammation than the infected K18-hACE2 mice. These pathological findings recapitulate some pathological changes seen in severe COVID-19 patients. Using this MA30-infected mouse model, we further demonstrate that T and/or B cells are essential in mounting an effective immune response against SARS-CoV-2. This was evident as Rag2-/- showed heightened vulnerability to infection and inhibited viral clearance. Conversely, the depletion of NK cells did not significantly alter the disease course in Rag2-/- mice, underscoring the minimal role of NK cells in the acute phase of MA30-induced disease. Together, our results indicate that T and/or B cells, but not NK cells, mitigate MA30-induced disease in mice and the infected mouse model can be used for dissecting the pathogenesis and immunology of severe COVID-19.


Assuntos
COVID-19 , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Células Matadoras Naturais , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Animais , Células Matadoras Naturais/imunologia , COVID-19/imunologia , COVID-19/virologia , Camundongos , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/deficiência , Camundongos Knockout , Humanos , Pulmão/patologia , Pulmão/virologia , Pulmão/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Linfócitos B/imunologia , Feminino , Linfócitos T/imunologia
11.
Cell Mol Life Sci ; 81(1): 94, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38368584

RESUMO

The complement system, a key component of innate immunity, provides the first line of defense against bacterial infection; however, the COVID-19 pandemic has revealed that it may also engender severe complications in the context of viral respiratory disease. Here, we review the mechanisms of complement activation and regulation and explore their roles in both protecting against infection and exacerbating disease. We discuss emerging evidence related to complement-targeted therapeutics in COVID-19 and compare the role of the complement in other respiratory viral diseases like influenza and respiratory syncytial virus. We review recent mechanistic studies and animal models that can be used for further investigation. Novel knockout studies are proposed to better understand the nuances of the activation of the complement system in respiratory viral diseases.


Assuntos
COVID-19 , Influenza Humana , Vírus Sincicial Respiratório Humano , Animais , Humanos , Pandemias , Proteínas do Sistema Complemento
12.
Neuroscience ; 538: 22-29, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38072171

RESUMO

In the field of brain-to-text communication, it is difficult to finish highly dexterous behaviors of writing multi-character by motor-imagery-based brain-computer interface (MI-BCI), setting a barrier to restore communication in people who have lost the ability to move and speak. In this paper, we design and implement a multi-character classification scheme based on 29 characters of motor imagery (MI) electroencephalogram (EEG) signals, which contains 26 English letters and 3 punctuation marks. Firstly, we design a novel experimental paradigm to increase the variety of BCI inputs by asking subjects to imagine the movement of writing 29 characters instead of gross motor skills such as reaching or grasping. Secondly, because of the high dimension of EEG signals, we adopt power spectral density (PSD), principal components analysis (PCA), kernel principal components analysis (KPCA) respectively to decompose EEG signals and extract feature, and then test the results with pearson product-moment correlation coefficient (PCCs). Thirdly, we respectively employ k-nearest neighbor (kNN), support vector machine (SVM), extreme learning machine (ELM) and light gradient boosting machine (LightGBM) to classify 29 characters and compare the results. We have implemented a complete scheme, including paradigm design, signal acquisition, feature extraction and classification, which can effectively classify 29 characters. The experimental results show that the KPCA has the best feature extraction effect and the kNN has the highest classification accuracy, with the final classification accuracy reaching 96.2%, which is better than other studies.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Imagens, Psicoterapia , Movimento , Encéfalo , Algoritmos , Imaginação
13.
Commun Biol ; 6(1): 1265, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092883

RESUMO

SARS-CoV-2 infection can cause persistent respiratory sequelae. However, the underlying mechanisms remain unclear. Here we report that sub-lethally infected K18-human ACE2 mice show patchy pneumonia associated with histiocytic inflammation and collagen deposition at 21 and 45 days post infection (DPI). Transcriptomic analyses revealed that compared to influenza-infected mice, SARS-CoV-2-infected mice had reduced interferon-gamma/alpha responses at 4 DPI and failed to induce keratin 5 (Krt5) at 6 DPI in lung, a marker of nascent pulmonary progenitor cells. Histologically, influenza- but not SARS-CoV-2-infected mice showed extensive Krt5+ "pods" structure co-stained with stem cell markers Trp63/NGFR proliferated in the pulmonary consolidation area at both 7 and 14 DPI, with regression at 21 DPI. These Krt5+ "pods" structures were not observed in the lungs of SARS-CoV-2-infected humans or nonhuman primates. These results suggest that SARS-CoV-2 infection fails to induce nascent Krt5+ cell proliferation in consolidated regions, leading to incomplete repair of the injured lung.


Assuntos
COVID-19 , Influenza Humana , Camundongos , Humanos , Animais , SARS-CoV-2 , Pulmão , Perfilação da Expressão Gênica
14.
Am J Physiol Renal Physiol ; 325(6): F770-F778, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823193

RESUMO

Kidney intercalated cells (ICs) maintain acid-base homeostasis and recent studies have demonstrated that they function in the kidney's innate defense. To study kidney innate immune function, ICs have been enriched using vacuolar ATPase (V-ATPase) B1 subunit (Atp6v1b1)-Cre (B1-Cre) mice. Although Atp6v1b1 is considered kidney specific, it is expressed in multiple organ systems, both in mice and humans, raising the possibility of off-target effects when using the Cre-lox system. We have recently shown using single-cell RNA sequencing that the gene that codes for the V-ATPase G3 subunit (mouse gene: Atp6v1g3; human gene: ATP6V1G3; protein abbreviation: G3) mRNA is selectively enriched in human kidney ICs. In this study, we generated Atp6v1g3-Cre (G3-Cre) reporter mice using CRISPR/CAS technology and crossed them with Tdtomatoflox/flox mice. The resultant G3-Cre+Tdt+ progeny was evaluated for kidney specificity in multiple tissues and found to be highly specific to kidney cells with minimal or no expression in other organs evaluated compared with B1-Cre mice. Tdt+ cells were flow sorted and were enriched for IC marker genes on RT-PCR analysis. Next, we crossed these mice to ihCD59 mice to generate an IC depletion mouse model (G3-Cre+ihCD59+/+). ICs were depleted in these mice using intermedilysin, which resulted in lower blood pH, suggestive of a distal renal tubular acidosis phenotype. The G3-Cre mice were healthy, bred normally, and produce regular-sized litter. Thus, this new "IC reporter" mice can be a useful tool to study ICs.NEW & NOTEWORTHY This study details the development, validation, and experimental use of a new mouse model to study the collecting duct and intercalated cells. Kidney intercalated cells are a cell type increasingly recognized to be important in several human diseases including kidney infections, acid-base disorders, and acute kidney injury.


Assuntos
Acidose Tubular Renal , Túbulos Renais Coletores , ATPases Vacuolares Próton-Translocadoras , Camundongos , Humanos , Animais , Rim/metabolismo , Integrases/genética , Integrases/metabolismo , Acidose Tubular Renal/genética , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Túbulos Renais Coletores/metabolismo
15.
mSphere ; 8(5): e0037523, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37737611

RESUMO

Single-cell RNA-seq has been used to characterize human COVID-19. To determine if preclinical models successfully mimic the cell-intrinsic and -extrinsic effects of severe disease, we conducted a meta-analysis of single-cell data across five model species. To assess whether dissemination of viral RNA in lung cells tracks pathology and results in cell-intrinsic and -extrinsic transcriptomic changes in COVID-19. We conducted a meta-analysis by analyzing six publicly available, scRNA-seq data sets. We used dual mapping (host and virus) and differential gene expression analyses to compare viral+ and viral- cell populations. We conducted a principal component analysis to identify successful models of human COVID-19. We found expression of viral RNA in many non-epithelial cell types. Fibroblasts, macrophages, and endothelial cells exhibit clear evidence of viral-intrinsic and -extrinsic effects on host gene expression. Using viral RNA expression, we found that K18-hACE2 mice most closely modeled severe human COVID-19, followed by hamsters. Ferrets and macaques are poor models of human disease due to the low presence of viral RNA. Moreover, we found that increased transcripts of certain key inflammatory genes such as IL1B, IL18, and CXCL10 are not restricted to virally infected cells, suggesting these genes are regulated in a paracrine or autocrine fashion. These data affirm widespread dissemination of viral RNA in the lung, which may be key in the pathogenesis of severe COVID-19 and demonstrate ferrets and Rhesus macaques are poor models of human COVID-19. IMPORTANCE We conducted a high-resolution meta-analysis of scRNA-seq data from humans and five animal models of COVID-19. This study reports viral RNA dissemination in several cell types in human data as well as in some of the pre-clinical models. Using this metric, the K18-hACE2 mouse model, followed by the hamster model, most closely resembled human COVID-19. We observed clear evidence of viral-intrinsic effects within cells (e.g., IRF5 expression) as well as viral-extrinsic cytokine modulation (e.g., IL1B, IL18, CXCL10). We observed proinflammatory chemokine expression in cells devoid of viral RNA expression, suggesting autocrine/paracrine interferon regulation. This report serves as a resource-synthesizing data from COVID-19 humans and animal models and suggesting improvements for relevant pre-clinical models that may aid future diagnostic and therapeutic development projects.


Assuntos
COVID-19 , RNA Viral , Cricetinae , Humanos , Animais , Camundongos , RNA Viral/genética , SARS-CoV-2/genética , Células Endoteliais , Furões , Interleucina-18 , Macaca mulatta
16.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629052

RESUMO

Within arterial plaque, HIV infection creates a state of inflammation and immune activation, triggering NLRP3/caspase-1 inflammasome, tissue damage, and monocyte/macrophage infiltration. Previously, we documented that caspase-1 activation in myeloid cells was linked with HIV-associated atherosclerosis in mice and people with HIV. Here, we mechanistically examined the direct effect of caspase-1 on HIV-associated atherosclerosis. Caspase-1-deficient (Casp-1-/-) mice were crossed with HIV-1 transgenic (Tg26+/-) mice with an atherogenic ApoE-deficient (ApoE-/-) background to create global caspase-1-deficient mice (Tg26+/-/ApoE-/-/Casp-1-/-). Caspase-1-sufficient (Tg26+/-/ApoE-/-/Casp-1+/+) mice served as the controls. Next, we created chimeric hematopoietic cell-deficient mice by reconstituting irradiated ApoE-/- mice with bone marrow cells transplanted from Tg26+/-/ApoE-/-/Casp-1-/- (BMT Casp-1-/-) or Tg26+/-/ApoE-/-/Casp-1+/+ (BMT Casp-1+/+) mice. Global caspase-1 knockout in mice suppressed plaque deposition in the thoracic aorta, serum IL-18 levels, and ex vivo foam cell formation. The deficiency of caspase-1 in hematopoietic cells resulted in reduced atherosclerotic plaque burden in the whole aorta and aortic root, which was associated with reduced macrophage infiltration. Transcriptomic analyses of peripheral mononuclear cells and splenocytes indicated that caspase-1 deficiency inhibited caspase-1 pathway-related genes. These results document the critical atherogenic role of caspase-1 in chronic HIV infection and highlight the implication of this pathway and peripheral immune activation in HIV-associated atherosclerosis.


Assuntos
Aterosclerose , Infecções por HIV , HIV-1 , Placa Aterosclerótica , Animais , Camundongos , Apolipoproteínas E/genética , Aterosclerose/genética , Caspase 1/genética , Infecções por HIV/complicações , Infecções por HIV/genética , Placa Aterosclerótica/genética
17.
Front Immunol ; 14: 1158455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457744

RESUMO

Introduction: Severe COVID-19 results initially in pulmonary infection and inflammation. Symptoms can persist beyond the period of acute infection, and patients with Post-Acute Sequelae of COVID (PASC) often exhibit a variety of symptoms weeks or months following acute phase resolution including continued pulmonary dysfunction, fatigue, and neurocognitive abnormalities. We hypothesized that dysregulated NAD metabolism contributes to these abnormalities. Methods: RNAsequencing of lungs from transgenic mice expressing human ACE2 (K18-hACE2) challenged with SARS-CoV-2 revealed upregulation of NAD biosynthetic enzymes, including NAPRT1, NMNAT1, NAMPT, and IDO1 6 days post-infection. Results: Our data also demonstrate increased gene expression of NAD consuming enzymes: PARP 9,10,14 and CD38. At the same time, SIRT1, a protein deacetylase (requiring NAD as a cofactor and involved in control of inflammation) is downregulated. We confirmed our findings by mining sequencing data from lungs of patients that died from SARS-CoV-2 infection. Our validated findings demonstrating increased NAD turnover in SARS-CoV-2 infection suggested that modulating NAD pathways may alter disease progression and may offer therapeutic benefits. Specifically, we hypothesized that treating K18-hACE2 mice with nicotinamide riboside (NR), a potent NAD precursor, may mitigate lethality and improve recovery from SARS-CoV-2 infection. We also tested the therapeutic potential of an anti- monomeric NAMPT antibody using the same infection model. Treatment with high dose anti-NAMPT antibody resulted in significantly decreased body weight compared to control, which was mitigated by combining HD anti-NAMPT antibody with NR. We observed a significant increase in lipid metabolites, including eicosadienoic acid, oleic acid, and palmitoyl carnitine in the low dose antibody + NR group. We also observed significantly increased nicotinamide related metabolites in NR treated animals. Discussion: Our data suggest that infection perturbs NAD pathways, identify novel mechanisms that may explain some pathophysiology of CoVID-19 and suggest novel strategies for both treatment and prevention.


Assuntos
COVID-19 , Nicotinamida-Nucleotídeo Adenililtransferase , Humanos , Camundongos , Animais , NAD/metabolismo , SARS-CoV-2/metabolismo , Camundongos Transgênicos , Inflamação , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
18.
Cogn Neurodyn ; 17(2): 373-384, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37007202

RESUMO

Brain-computer interface (BCI) can obtain text information by decoding language induced electroencephalogram (EEG) signals, so as to restore communication ability for patients with language impairment. At present, the BCI system based on speech imagery of Chinese characters has the problem of low accuracy of features classification. In this paper, the light gradient boosting machine (LightGBM) is adopted to recognize Chinese characters and solve the above problems. Firstly, the Db4 wavelet basis function is selected to decompose the EEG signals in six-layer of full frequency band, and the correlation features of Chinese characters speech imagery with high time resolution and high frequency resolution are extracted. Secondly, the two core algorithms of LightGBM, gradient-based one-side sampling and exclusive feature bundling, are used to classify the extracted features. Finally, we verify that classification performance of LightGBM is more accurate and applicable than the traditional classifiers according to the statistical analysis methods. We evaluate the proposed method through contrast experiment. The experimental results show that the average classification accuracy of the subjects' silent reading of Chinese characters "(left)", "(one)" and simultaneous silent reading is improved by 5.24%, 4.90% and 12.44% respectively.

19.
Comput Biol Med ; 157: 106792, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965325

RESUMO

Segmentation of anatomical structures in ultrasound images is a challenging task due to existence of artifacts inherit to the modality such as speckle noise, attenuation, shadowing, uneven textures and blurred boundaries. This paper presents a novel attention-based predict-refine network, called ACU2E-Net, for segmentation of soft-tissue structures in ultrasound images. The network consists of two modules: a predict module, which is built upon our newly proposed attentive coordinate convolution; and a novel multi-head residual refinement module, which consists of three parallel residual refinement modules. The attentive coordinate convolution is designed to improve the segmentation accuracy by perceiving the shape and positional information of the target anatomy. The proposed multi-head residual refinement module reduces both segmentation biases and variances by integrating residual refinement and ensemble strategies. Moreover, it avoids multi-pass training and inference commonly seen in ensemble methods. To show the effectiveness of our method, we collect a comprehensive dataset of thyroid ultrasound scans from 12 different imaging centers, and evaluate our proposed network against state-of-the-art segmentation methods. Comparisons against state-of-the-art models demonstrate the competitive performance of our newly designed network on both the transverse and sagittal thyroid images. Ablation studies show that proposed modules improve the segmentation Dice score of the baseline model from 79.62% to 80.97% and 82.92% while reducing the variance from 6.12% to 4.67% and 3.21% in transverse and sagittal views, respectively.


Assuntos
Processamento de Imagem Assistida por Computador , Artefatos , Instalações de Saúde , Glândula Tireoide/diagnóstico por imagem , Ultrassonografia
20.
Exp Biol Med (Maywood) ; 248(2): 117-129, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426712

RESUMO

Immune-mediated hepatitis is marked by liver inflammation characterized by immune cell infiltration, chemokine/cytokine production, and hepatocyte injury. C-X3C motif receptor 1 (CX3CR1), as the receptor of chemokine C-X3C motif ligand 1 (CX3CL1)/fractalkine, is mainly expressed on immune cells including monocytes and T cells. Previous studies have shown that CX3CR1 protects against liver fibrosis, but the exact role of CX3CL1/CX3CR1 in acute immune-mediated hepatitis remains unknown. Here, we investigate the role of the CX3CL1/CX3CR1 axis in immune-mediated hepatitis using concanavalin A (ConA)-induced liver injury model in CX3CR1-deficient (Cx3cr1-/-) mice. We observed that Cx3cr1-/- mice had severe liver injury and increased pro-inflammatory cytokines (tumor necrosis factor-alpha [TNF-α], interferon-gamma [IFN-γ], interleukin-1 beta [IL-1ß], and IL-6) in serum and liver compared to wild-type (Cx3cr1+/+) mice after ConA injection. The deficiency of CX3CR1 did not affect ConA-induced immune cell infiltration in liver but led to elevated production of TNF-α in macrophages as well as IFN-γ in T cells after ConA treatment. On the contrary, exogenous CX3CL1 attenuated ConA-induced cytokine production in wild type, but not CX3CR1-deficient macrophages and T cells. Furthermore, in vitro results showed that CX3CR1 deficiency promoted the pro-inflammatory cytokine expression by increasing the phosphorylation of nuclear factor kappa B (NF-κB) p65 (p-NF-κB p65). Finally, pre-treatment of p-NF-κB p65 inhibitor, resveratrol, attenuated ConA-induced liver injury and inflammatory responses, especially in Cx3cr1-/- mice. In conclusion, our data show that the deficiency of CX3CR1 promotes pro-inflammatory cytokine production in macrophages and T cells by enhancing the phosphorylation of NF-κB p65, which exacerbates liver injury in ConA-induced hepatitis.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatite , Camundongos , Animais , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linfócitos T/metabolismo , Citocinas/metabolismo , Hepatite/patologia , Macrófagos/metabolismo , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Receptor 1 de Quimiocina CX3C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA