Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plants (Basel) ; 12(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37514365

RESUMO

This study evaluated Carbon (C) storage in different compartments in eucalyptus stands and native Cerrado vegetation. To determine C above ground, an inventory was carried out in the areas where diameter at breast height (DBH), diameter at base height (Db), and total tree height (H) were measured. In the stands, the rigorous cubage was made by the direct method, and in the native vegetation, it was determined by the indirect method through an allometric equation. Roots were collected by direct method using circular monoliths to a depth of 60 cm and determined by the volume of the cylinder. Samples were collected up to 100 cm deep to estimate C stock in the soil. All samples collected directly had C determined using the CHNS elemental analyzer. Gas samples were collected using a manually closed chamber, and the gas concentration was determined by gas chromatography. The results indicate high C storage in the studied areas > 183.99 Mg ha-1, could contribute to CO2 mitigation > 674.17 Mg ha-1. In addition to low emissions (<1 kg ha-1 yr-1) for the three evaluated areas, with no statistical difference in relation to the Global Warming Potential. Concerning the native cerrado vegetation conversion, the "4-year-old eucalyptus stand" seemed to restore the original soil carbon stocks in the first-meter depth, regardless of some losses that might have occurred right after establishment. Conversely, a significant loss of carbon in the soil was observed due to the alternative setting, where similar natural land was converted into agriculture, mostly soybean, and then, years later, turned into the "6-year-old eucalyptus stand" (28.43 Mg ha-1). Under this study, these mixed series of C baselines in landscape transitions have reflected on unlike C dynamics outcomes, whereas at the bottom line, total C stocks were higher in the younger forest (4-year-old stand). Therefore, our finding indicates that we should be thoughtful regarding upscaling carbon emissions and sequestration from small-scale measurements to regional scales.

2.
Sci. agric ; 78(1): e20180355, 2021. map, tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1497915

RESUMO

Forest soils are N2O sources and commonly act as CH4 sinks. This study evaluated the dynamics of the CH4 and N2O fluxes of soils under Eucalyptus plantations and native Cerrado vegetation, as well as possible interactions between environmental factors and fluxes. The study was carried out in the Distrito Federal, Brazil, during 26 months, in three areas: in two stands of the hybrid Eucalyptus urophylla × Eucalyptus grandis, planted in 2011 (E1), and in 2009 (E2) and native Cerrado vegetation (CE). Measurements to determine the fluxes in a closed static chamber were carried out from Oct 2013 to Nov 2015. Soil and climate factors were monitored. During the study period, the mean CH4 fluxes were –22.48, –8.38 and –1.31 μg CH4 m–2 h–1 and the mean N2O fluxes 5.45, 4.85 and 3.85 μg N2O m–2 h–1 from E1, E2 and CE, respectively. Seasonality affected plantations in the studied sites. Cumulative CH4 influxes were calculated (year-1: –1.86 to -0.63 kg ha–1 yr–1; year-2: –1.85 to –1.34 kg ha–1 yr–1). Cumulative N2O fluxes in the three sites were ≤ 0.85 kg ha–1 yr–1. The change in land use from Cerrado to Eucalyptus plantations did not significantly changed regarding greenhouse gases (GHG), compared to the native vegetation. Flux rates of both gases (N2O and CH4) were low. Temporal variations in GHG fluxes and different ages of the stands did not cause significant differences in cumulative annual fluxes.


Assuntos
Eucalyptus/química , Gases de Efeito Estufa , Metano , Árvores/química , Óxido Nitroso , Brasil
3.
Sci. agric. ; 78(1): e20180355, 2021. mapas, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-27644

RESUMO

Forest soils are N2O sources and commonly act as CH4 sinks. This study evaluated the dynamics of the CH4 and N2O fluxes of soils under Eucalyptus plantations and native Cerrado vegetation, as well as possible interactions between environmental factors and fluxes. The study was carried out in the Distrito Federal, Brazil, during 26 months, in three areas: in two stands of the hybrid Eucalyptus urophylla × Eucalyptus grandis, planted in 2011 (E1), and in 2009 (E2) and native Cerrado vegetation (CE). Measurements to determine the fluxes in a closed static chamber were carried out from Oct 2013 to Nov 2015. Soil and climate factors were monitored. During the study period, the mean CH4 fluxes were –22.48, –8.38 and –1.31 μg CH4 m–2 h–1 and the mean N2O fluxes 5.45, 4.85 and 3.85 μg N2O m–2 h–1 from E1, E2 and CE, respectively. Seasonality affected plantations in the studied sites. Cumulative CH4 influxes were calculated (year-1: –1.86 to -0.63 kg ha–1 yr–1; year-2: –1.85 to –1.34 kg ha–1 yr–1). Cumulative N2O fluxes in the three sites were ≤ 0.85 kg ha–1 yr–1. The change in land use from Cerrado to Eucalyptus plantations did not significantly changed regarding greenhouse gases (GHG), compared to the native vegetation. Flux rates of both gases (N2O and CH4) were low. Temporal variations in GHG fluxes and different ages of the stands did not cause significant differences in cumulative annual fluxes.(AU)


Assuntos
Eucalyptus/química , Metano , Óxido Nitroso , Gases de Efeito Estufa , Árvores/química , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA