Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(51): 10807-10816, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38108191

RESUMO

This work discusses the electron structure, antioxidative properties, and solvent contribution of two new antioxidant molecules discovered, named S10 and S11, extracted from a medicinal plant called Vatairea guianensis, found in the Amazon rain-forest. To gain a better understanding, a study using density functional theory coupled with the polarizable-continuum model and the standard 6-311++G(d,p) basis set was conducted. The results indicate that S10 has a higher antioxidant potential than S11, confirming the experimental expectations. In the gas phase, the hydrogen atom transfer route dominates the hydrogen scavenging procedure. However, in the water solvents, the antioxidant mechanism prefers the sequential proton loss electron transfer mechanism. Furthermore, the solvent plays a fundamental role in the antioxidant mechanism. The formation of an intramolecular OH···OCH3 hydrogen bond is crucial for accurately describing the hydrogen scavenging phenomenon, better aligning with the experimental data. The results suggest that the two isoflavones investigated are promising for the pharmacologic and food industries.


Assuntos
Antioxidantes , Hidrogênio , Antioxidantes/química , Solventes/química , Ligação de Hidrogênio , Hidrogênio/química , Prótons , Termodinâmica
2.
J Mol Model ; 29(8): 223, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402028

RESUMO

CONTEXT: Natural products and their biotransformation procedures are a powerful source of new chromophores with potential applications in fields like biology, pharmacology and materials science. Thus, this work discusses about the extraction procedure of 1-nitro-2-phenylethane (1N2PE) from Aniba canelilla, its biotransformation setup into 2-phenylethanol (2PE) using four fungi, Lasiodiplodia caatinguensis (phytopathogenic fungus from Citrus sinensis), Colletotrichum sp. (phytopathogenic fungus from Euterpe oleracea), Aspergillus flavus and Rigidoporus lineatus isolated from copper mining waste located in the interior of the Brazilian Amazon. A detailed experimental and theoretical vibrational analysis (IR and Raman) have allowed us to perform some charge transfer effects on the title compounds (push-pull effect) by monitoring specific vibrational modes of their electrophilic and nucleophilic molecular sites. The solvent interactions promote molecular conformations that affect the vibrational spectra of the donor and acceptor groups, as can be seen comparatively in the gas and aqueous solution spectra, an effect possibly related to the bathochromic shift in the calculated optical spectrum of the compounds. The nonlinear optical behavior shows that while the solvent reduces the response of 1N2PE, the response of 2PE increases the optical parameters, which presents low refractive index (n) and first hyperpolarizability. ([Formula: see text]) is almost eight times that reported for urea (42.79 a.u.), a common nonlinear optical material. Furthermore, the bioconversion goes from an electrophilic to a nucleophilic compound, affecting its molecular reactivity. METHODS: 1N2PE was obtained from Aniba canelilla, whose essential oil is constituted of [Formula: see text] of 2PE. The A. canelilla essential oil was extracted under hydrodistillation. The biotransformation reactions were performed in autoclaved liquid media (100 mL) composed of malt extract (2%) in 250 mL Erlenmeyer flask. Each culture was incubated in an orbital shaker (130 rpm) at [Formula: see text]C during 7 days and after that, 50 mg of 1N2PE (80%) were diluted in 100 [Formula: see text]L of dimethylsulfoxide (DMSO) and added to the reactions flasks. Aliquots (2 mL) were removed using ethyl acetate (2 mL) and analyzed by GC-MS (fused silica capillary col1umn, Rtx -5MS 30 m [Formula: see text] 0.25 mm [Formula: see text] 0.25 [Formula: see text]m) in order to determine the amount of 1N2PE biotransformation. FTIR 1N2PE and 2PE spectra were obtained by attenuated total reflectance (ATR), using a Agilent CARY 630 spectrometer, in the spectral region 4000-650 cm[Formula: see text]. The quantum chemical calculations were carried out in the Gaussian 09 program while the DICE code was used to perform the classical Monte Carlo simulations and generate the liquid environment using the classical All-Atom Optimized parameters for Liquid Simulations (AA-OPLS). All nonlinear optical properties, reactive parameters, and electronic excitations were calculated using the Density Functional Theory framework coupled to the standard 6-311++G(d,p) basis set.


Assuntos
Óleos Voláteis , Álcool Feniletílico , Termodinâmica , Solventes , Fungos , Análise Espectral Raman , Espectroscopia de Infravermelho com Transformada de Fourier , Teoria Quântica
3.
Chemphyschem ; 24(12): e202300060, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36929611

RESUMO

The solute polarization due to solvent is a an electrostatic quantum effect that impacts diverse molecular properties, including the nonlinear optical response of a material. An iterative procedure that allows updating the solute charge distribution in the presence of the solvent is combined with a sequential Monte Carlo/Quantum Mechanics methodology and Density Functional Theory methods to evaluate the nonlinear optical (NLO) response using the hyper Rayleigh scattering (HRS) of a series of chromones recently identified in Chamaecrista diphylla, an herbaceous plant abundant throughout the Americas and used in folk medicine. From this study, it is determined that from gas to solvent environment, the systems acquire low refractive index (n) and an improvement of the first hyperpolarizability (ßHRS ), signaling potential NLO uses. It is shown that the octupolar contributions (ßJ=3 ) superate the dipolar ones (ßJ=1 ) and dominate the second-order optical response in both gas and liquid phases, which indicate nontrivial optical materials. Moreover, the solvent environment and structural changes in the periphery can tune significantly the dipolar/octupolar balance, showing a key to control the decoupling between these contributions.

4.
J Phys Chem A ; 127(3): 619-626, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36648308

RESUMO

Within the framework of Density Functional Theory (DFT), the relevance of the term Hartree-Fock exchange (HFE) for a variety of molecular properties is a critical point. For this reason, we spend efforts to understand these relationships in nuclear magnetic resonance (NMR) parameters in a water solvent. This work takes advantage of the appropriate aug-cc-pVTZ-J basis set and the Minnesota family of DFT methods, which consider different portions of HFE contributions. With regard to solvent participation, the results are based on a sequential Monte Carlo/Quantum Mechanics procedure, which builds the structures of the liquid under realistic thermodynamic conditions. Compared to the accurate results of second-order polarization propagator approximation (SOPPA) and experimental data, all NMR parameters show a huge dependence on the size of the HFE contribution. For instance, the inclusion of this term in 1JOH and 2JHH indirect spin-spin couplings does vary with 49.661 and 25.459 Hz, respectively. The M06-HF method accounts for 100% of HFE and better matches the σO and σH shielding constants. On the other hand, 1JOH and 2JHH demand a medium contribution (54% of HFE), the best description being associated with the M06-2X method. Thus, the dependence varies regarding the phenomenology of the property in focus and the order for independent treatments. For elements that participate in hydrogen bonds simultaneously as donor and acceptor actors, the results indicate that explicit solvent molecules must be considered in the quantum mechanical calculations for better modeling of paramagnetic shielding constants.

5.
J Comput Chem ; 42(25): 1772-1782, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34235753

RESUMO

The diagonal components and the trace of tensors which account for chiroptical response of the hydrazine molecule N2 H4 , that is, static anapole magnetizability and frequency-dependent electric dipole-magnetic dipole polarisability, are a function of the ϕ ≡ ∠ H─N─N─H dihedral angle. They vanish for symmetry reasons at ϕ = 0° and ϕ = 180°, corresponding respectively to C2v and C2h point group symmetries, that is, cis and trans conformers characterized by the presence of molecular symmetry planes. Nonetheless, vanishing diagonal components have been observed also in the proximity of ∠ H─N─N─H = 90°, in which the point group symmetry is C2 and hydrazine is unquestionably chiral. In the boranylborane molecule B2 H4 , assuming the B─B bond in the y direction, the ayy component of the anapole magnetizability tensor approximately vanishes for dihedral angles ∠ H─B─B─H corresponding to chiral rotamers which belong to D2 symmetry. Such anomalous effects have been ascribed to physical achirality of these conformers, that is, to their inability to sustain electronic current densities inducing either anapole moments, or electric and magnetic dipole moments, about the chiral axis connecting heavier atoms, as well as perpendicular directions. In other terms, the structure of certain geometrically chiral rotamers may be such that neither toroidal nor helical flow, which determine chiroptical phenomenology, can take place in the presence of perturbing fields parallel or orthogonal to the chiral axis.

6.
Chemphyschem ; 22(8): 764-774, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33528071

RESUMO

We present time-dependent density functional theory (TDDFT) calculations of the electronic optical rotation (ORP) for seven oxirane and two aziridine derivatives in the gas phase and in solution and compare the results with the available experimental values. For seven of the studied molecules it is the first time that their optical rotation was studied theoretically and we have therefore investigated the influence of several settings in the TDDFT calculations on the results. This includes the choice of the one-electron basis set, the exchange-correlation functional or the particular polarizable continuum model (PCM). We can confirm that polarized quadruple zeta basis sets augmented with diffuse functions are necessary for converged results and find that the aug-pc-3 basis set is a viable alternative to the frequently employed aug-cc-pVQZ basis set. Based on our study, we cannot recommend the generalized gradient functional KT3 for calculations of the ORP in these compounds, whereas the hybrid functional PBE0 gives results quite similar to the long-range correct CAM-B3LYP functional. Finally, we observe large differences in the solvent effects predicted by the integral equation formalism of PCM and the SMD variant of PCM. For the majority of solute/solvent combinations in this study, we find that the SMD model in combination with the PBE0 functional and the aug-pc-3 basis set gives the best agreement with the experimental values.

7.
Magn Reson Chem ; 54(8): 637-40, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26947581

RESUMO

The experimental (1) H nuclear magnetic resonance (NMR) spectrum of 1H-pyrazole was recorded in thermotropic nematic liquid crystal N-(p-ethoxybenzylidene)-p-butylaniline (EBBA) within the temperature range of 299-308 K. Two of three observable dipolar DHH -couplings appeared to be equal at each temperature because of fast prototropic tautomerism. Analysis of the Saupe orientational order parameters using fixed geometry determined by computations and experimental dipolar couplings results in a situation in which the molecular orientation relative to the magnetic field (and the liquid crystal director) can be described exceptionally by a single parameter. Copyright © 2016 John Wiley & Sons, Ltd.

8.
J Comput Chem ; 37(17): 1552-8, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27010603

RESUMO

In the presence of a static, nonhomogeneous magnetic field, represented by the axial vector B at the origin of the coordinate system and by the polar vector C=∇×B, assumed to be spatially uniform, the chiral molecules investigated in this paper carry an orbital electronic anapole, described by the polar vector A. The electronic interaction energy of these molecules in nonordered media is a cross term, coupling B and C via a¯, one third of the trace of the anapole magnetizability aαß tensor, that is, WBC=-a¯B·C. Both A and W(BC) have opposite sign in the two enantiomeric forms, a fact quite remarkable from the conceptual point of view. The magnitude of a¯ predicted in the present computational investigation for five chiral molecules is very small and significantly biased by electron correlation contributions, estimated at the density functional level via three different functionals. © 2016 Wiley Periodicals, Inc.

9.
Magn Reson Chem ; 53(2): 120-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25266873

RESUMO

The resonance-assisted hydrogen bond (HB) phenomenon has been studied theoretically by a localized molecular orbital (LMO) decomposition of the spin-spin coupling constants between atoms either involved or close to the O-H···O system of some ß-diketones and their saturated counterparts. The analysis, carried out at the level of the second-order polarization propagator approximation, shows that the contributions in terms of LMO to the paramagnetic spin orbital and the spin dipolar Ramsey terms proof the importance of the delocalized π-electron structure supporting the idea of the existence of the resonance-assisted HB phenomenon phenomenon. The LMO contributions to the Fermi contact term indicate mainly the presence of the HB that may or not be linked to the π-electrons.


Assuntos
Cetonas/química , Espectroscopia de Ressonância Magnética/métodos , Ligação de Hidrogênio , Modelos Moleculares
10.
J Chem Phys ; 143(24): 244107, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26723651

RESUMO

It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

11.
J Chem Phys ; 141(15): 151101, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25338873

RESUMO

We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the (1)J(C-H) coupling constant of CH4 using a decomposition into contributions from localized molecular orbitals and compare with the (1)J(N-H) coupling constant in NH3. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes--SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

12.
J Phys Chem A ; 118(32): 6239-47, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25046573

RESUMO

A theoretical study of magnetic properties of hydrogen peroxide in water has been carried out by means of Monte Carlo simulation and quantum mechanics calculations. The solvent effects were evaluated in supermolecular structures generated by simulations in the NPT ensemble. The solute-solvent structure was analyzed in terms of radial distribution functions, and the solute-solvent hydrogen bonds were identified with geometric and energetic criteria. Approximately three water molecules are hydrogen bonded to H2O2 (0.6 and 0.8 in each hydrogen and oxygen atom, respectively, of the H2O2). Although, on average, both hydroxyls of the peroxide are equivalent, the distribution of hydrogen-bonded water molecules is highly asymmetric. Analyzing the statistics of the hydrogen bonds, we identify that only 34% of the configurations give symmetric distributions around the two hydroxyls of the H2O2 simultaneously. The magnetic shieldings and the indirect spin-spin coupling constants were calculated at the B3LYP/aug-cc-pVTZ and aug-cc-pVTZ-J computational level. We find that the solvent shields the oxygen and unshields the hydrogen atoms of the peroxide (+5.5 and -2.9 ppm, respectively), with large fluctuation from configuration to configuration in the oxygen case, an effect largely accounted for in terms of a single hydrogen bond with H2O2 as the proton donor. The most sensitive coupling in the presence of the solvent is observed to be the one-bond J(O,H).


Assuntos
Peróxido de Hidrogênio/química , Teoria Quântica , Água/química , Fenômenos Magnéticos , Método de Monte Carlo
13.
J Chem Phys ; 133(5): 054308, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20707533

RESUMO

The aug-cc-pVTZ-J series of basis sets for indirect nuclear spin-spin coupling constants has been extended to the atoms B, Al, Si, P, and Cl. The basis sets were obtained according to the scheme previously described by Provasi et al. [J. Chem. Phys. 115, 1324 (2001)]. First, the completely uncontracted correlation consistent aug-cc-pVTZ basis sets were extended with four tight s and three tight d functions. Second, the s and p basis functions were contracted with the molecular orbital coefficients of self-consistent-field calculations performed with the uncontracted basis sets on the simplest hydrides of each atom. As a first illustration, we have calculated the one-bond indirect spin-spin coupling constants in BH(4)(-), BF, AlH, AlF, SiH(4), SiF(4), PH(3), PF(3), H(2)S, SF(6), HCl, and ClF at the level of density functional theory using the Becke three parameter Lee-Yang-Parr and the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes.

14.
J Phys Chem A ; 113(52): 14936-42, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19746949

RESUMO

The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the (1)J(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the (2)J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for (1)J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, sigma((15)N) calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Delta sigma((15)N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.


Assuntos
Amônia/química , Teoria Quântica , Espectroscopia de Ressonância Magnética , Método de Monte Carlo , Soluções , Eletricidade Estática
15.
Phys Chem Chem Phys ; 11(20): 3987-95, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19440628

RESUMO

We recently showed, by analyzing contributions from localized molecular orbitals, that the anomalous deuterium isotope effect in the one-bond indirect nuclear spin-spin coupling constant of methane, also called the unexpected differential sensitivity, can be explained by the transfer of s-orbital character from the stretched bond to the other unchanged bonds [ChemPhysChem, 2008, 9, 1259]. We now extend this analysis of isotope effects to the molecules BH(4)(-), NH(4)(+), SiH(4), H(2)O and NH(3) in order to test our conclusions on a wider rage of XH(4) compounds and to investigate whether the lone-pair orbitals are really responsible for the absence of a similar effect in water and ammonia as proposed earlier [J. Chem. Phys., 2000, 113, 3121].

16.
Magn Reson Chem ; 47(2): 113-20, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18991325

RESUMO

In this work it was sought to explore the versatility of geminal spin-spin coupling constants, (2)J(XY) SSCCs, as probes for stereochemical studies. A set of compounds, where their experimental (2)J(XY) SSCCs through the X-C-Y molecular fragment are predicted to be sensitive to hyperconjugative interactions involving either bonding or antibonding orbitals containing the C carbon atom ('coupling pathway'), were analyzed. SSCC calculations were performed for some selected examples using the second order polarization propagator approximation (SOPPA) method or within the DFT-B3LYP framework. Hyperconjugative interactions were calculated within the Natural Bond Orbital (NBO) approach. Results are condensed in two qualitative rules: Rule I(M)-hyperconjugative interactions transferring charge into the coupling pathway yield a positive increase to the Fermi contact (FC), contribution to (2)K(XY) reduced spin-spin coupling constants (RSSCC), and Rule II(M)-hyperconjugative interactions transferring charge from the coupling pathway yield a negative increase to the FC contribution to (2)K(XY) RSSCC.

17.
J Chem Theory Comput ; 2(4): 1019-27, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26633061

RESUMO

The angular dependence of the vicinal fluorine-fluorine coupling constant, (3)JFF, for 1,2-difluoroethane has been investigated with several polarization propagator methods. (3)JFF and its four Ramsey contributions were calculated using the random phase approximation (RPA), its multiconfigurational generalization, and both second-order polarization propagator approximations (SOPPA and SOPPA(CCSD)), using locally dense basis sets. The geometries were optimized for each dihedral angle at the level of density functional theory using the B3LYP functional and fourth-order Møller-Plesset perturbation theory. The resulting coupling constant curves were fitted to a cosine series with 8 coefficients. Our results are compared with those obtained previously and values estimated from experiment. It is found that the inclusion of electron correlation in the calculation of (3)JFF reduces the absolute values. This is mainly due to changes in the FC contribution, which for dihedral angles around the trans conformation even changes its sign. This sign change is responsible for the breakdown of the Karplus-like curve.

18.
J Phys Chem B ; 109(38): 18189-94, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16853336

RESUMO

A theoretical study of linear and cyclic clusters of (HCN)n and (HNC)n (up to n = 10) has been carried out by means of DFT and MP2 ab initio methods. The transition states linking the cyclic clusters show high energetic barriers that prevent the spontaneous transformation of the high-energy clusters, (HNC)n, into the low-energy ones, (HCN)n. The effect of the protonation/deprotonation of the linear clusters has also been explored. The results show that (HNC)n clusters with n values larger than six are thermodynamically more stable as charged systems than as neutral ones. The geometrical results have been analyzed using a Steiner-Limbach plot. The electron density and its Laplacian at the bond critical points correlate with the corresponding bond distances by means of two exponential functions, one for the open shell and another for the closed shell cases.


Assuntos
Cianatos/química , Cianeto de Hidrogênio/química , Calorimetria , Modelos Moleculares , Modelos Teóricos , Termodinâmica
19.
J Phys Chem A ; 109(29): 6555-64, 2005 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16834002

RESUMO

The cooperativity effects on both the electronic energy and NMR indirect nuclear spin-spin coupling constants J of the linear complexes (HCN)n and (HNC)n (n = 1-6) are discussed. The geometries of the complexes were optimized at the MP2 level by using the cc-pVTZ basis sets. The spin-spin coupling constants were calculated at the level of the second-order polarization propagator approximation with use of the local dense basis set scheme based on the cc-pVTZ-J basis sets. We find strong correlations in the patterns of different properties such as interaction energy, hydrogen bond distances, and spin-spin coupling constants for both series of compounds. The intramolecular spin-spin couplings are with two exceptions dominated by the Fermi contact (FC) mechanism, while the FC term is the only nonvanishing contribution for the intermolecular couplings. The latter do not follow the Dirac vector model and are important only between nearest neighbors.


Assuntos
Cianeto de Hidrogênio/química , Elétrons , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA