Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 199: 108141, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38964593

RESUMO

Platyhelminthes, also known as flatworms, is a phylum of bilaterian invertebrates infamous for their parasitic representatives. The classes Cestoda, Monogenea, and Trematoda comprise parasitic helminths inhabiting multiple hosts, including fishes, humans, and livestock, and are responsible for considerable economic damage and burden on human health. As in other animals, the genomes of flatworms have a wide variety of paralogs, genes related via duplication, whose origins could be mapped throughout the evolution of the phylum. Through in-silico analysis, we studied inparalogs, i.e., species-specific duplications, focusing on their biological functions, expression changes, and evolutionary rate. These genes are thought to be key players in the adaptation process of species to each particular niche. Our results showed that genes related with specific functional terms, such as response to stress, transferase activity, oxidoreductase activity, and peptidases, are overrepresented among inparalogs. This trend is conserved among species from different classes, including free-living species. Available expression data from Schistosoma mansoni, a parasite from the trematode class, demonstrated high conservation of expression patterns between inparalogs, but with notable exceptions, which also display evidence of rapid evolution. We discuss how natural selection may operate to maintain these genes and the particular duplication models that fit better to the observations. Our work supports the critical role of gene duplication in the evolution of flatworms, representing the first study of inparalogs evolution at the genome-wide level in this group.


Assuntos
Evolução Molecular , Duplicação Gênica , Platelmintos , Animais , Platelmintos/genética , Platelmintos/classificação , Genoma Helmíntico , Especificidade da Espécie , Filogenia
2.
Genome Biol Evol ; 8(8): 2312-8, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27435793

RESUMO

Eukaryotic genomes are compositionally heterogeneous, that is, composed by regions that differ in guanine-cytosine (GC) content (isochores). The most well documented case is that of vertebrates (mainly mammals) although it has been also noted among unicellular eukaryotes and invertebrates. In the human genome, regarded as a typical mammal, this heterogeneity is associated with several features. Specifically, genes located in GC-richest regions are the GC3-richest, display CpG islands and have shorter introns. Furthermore, these genes are more heavily expressed and tend to be located at the extremes of the chromosomes. Although the compositional heterogeneity seems to be widespread among eukaryotes, the associated properties noted in the human genome and other mammals have not been investigated in depth in other taxa Here we provide evidence that the genome of the parasitic flatworm Schistosoma mansoni is compositionally heterogeneous and exhibits an isochore-like structure, displaying some features associated, until now, only with the human and other vertebrate genomes, with the exception of gene concentration.


Assuntos
Evolução Molecular , Genoma Helmíntico , Isocoros/genética , Schistosoma mansoni/genética , Animais , Sequência Rica em GC
3.
Nucleic Acids Res ; 41(Database issue): D728-31, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161692

RESUMO

The new release of SchistoDB (http://SchistoDB.net) provides a rich resource of genomic data for key blood flukes (genus Schistosoma) which cause disease in hundreds of millions of people worldwide. SchistoDB integrates whole-genome sequence and annotation of three species of the genus and provides enhanced bioinformatics analyses and data-mining tools. A simple, yet comprehensive web interface provided through the Strategies Web Development Kit is available for the mining and visualization of the data. Genomic scale data can be queried based on BLAST searches, annotation keywords and gene ID searches, gene ontology terms, sequence motifs, protein characteristics and phylogenetic relationships. Search strategies can be saved within a user's profile for future retrieval and may also be shared with other researchers using a unique web address.


Assuntos
Bases de Dados Genéticas , Genoma Helmíntico , Schistosoma haematobium/genética , Schistosoma japonicum/genética , Schistosoma mansoni/genética , Animais , Genômica , Internet
4.
BMC Genomics ; 11: 237, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20385027

RESUMO

BACKGROUND: The thioredoxin and/or glutathione pathways occur in all organisms. They provide electrons for deoxyribonucleotide synthesis, function as antioxidant defenses, in detoxification, Fe/S biogenesis and participate in a variety of cellular processes. In contrast to their mammalian hosts, platyhelminth (flatworm) parasites studied so far, lack conventional thioredoxin and glutathione systems. Instead, they possess a linked thioredoxin-glutathione system with the selenocysteine-containing enzyme thioredoxin glutathione reductase (TGR) as the single redox hub that controls the overall redox homeostasis. TGR has been recently validated as a drug target for schistosomiasis and new drug leads targeting TGR have recently been identified for these platyhelminth infections that affect more than 200 million people and for which a single drug is currently available. Little is known regarding the genomic structure of flatworm TGRs, the expression of TGR variants and whether the absence of conventional thioredoxin and glutathione systems is a signature of the entire platyhelminth phylum. RESULTS: We examine platyhelminth genomes and transcriptomes and find that all platyhelminth parasites (from classes Cestoda and Trematoda) conform to a biochemical scenario involving, exclusively, a selenium-dependent linked thioredoxin-glutathione system having TGR as a central redox hub. In contrast, the free-living platyhelminth Schmidtea mediterranea (Class Turbellaria) possesses conventional and linked thioredoxin and glutathione systems. We identify TGR variants in Schistosoma spp. derived from a single gene, and demonstrate their expression. We also provide experimental evidence that alternative initiation of transcription and alternative transcript processing contribute to the generation of TGR variants in platyhelminth parasites. CONCLUSIONS: Our results indicate that thioredoxin and glutathione pathways differ in parasitic and free-living flatworms and that canonical enzymes were specifically lost in the parasitic lineage. Platyhelminth parasites possess a unique and simplified redox system for diverse essential processes, and thus TGR is an excellent drug target for platyhelminth infections. Inhibition of the central redox wire hub would lead to overall disruption of redox homeostasis and disable DNA synthesis.


Assuntos
Glutationa/metabolismo , Platelmintos/genética , Platelmintos/fisiologia , Tiorredoxinas/metabolismo , Animais , Redes e Vias Metabólicas , Complexos Multienzimáticos , NADH NADPH Oxirredutases , Filogenia , Regiões Promotoras Genéticas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA