RESUMO
Fruit weight (FW) and shelf life (SL) are important traits in commercial fresh market tomatoes. A tomato RIL population was developed by antagonistic and divergent selection for both traits from an interspecific cross between the Solanum lycopersicum L. cv. "Caimanta" and the S. pimpinellifolium L. accession "LA0722". The objective of this work was to evaluate phenotypic and genetic components for FW and SL. Phenotypic data from RILs were collected during 3-year trials. Sixteen SSR, 62 InDels developed based on the genome sequences of "Caimanta" and "LA0722", and four functional markers for fruit size genes were used. FW and SL had a significant genetic variability, and both traits showed a genotype by year interaction. Genome-wide molecular characterization of the population demonstrated that is genetically structured according to FW. Marker data was used to study changes on allelic frequencies at loci between the phenotypic extreme group of RILs for FW and SL. Twenty four markers were associated to FW, the LC gene in chromosome 2 and other six markers in chromosomes 1, 2, 6, and 11 presented the most significant associations. Finally, we reported three new genomic regions located on chromosomes 9, 10 and 12 that underlie SL in tomato.