Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ISA Trans ; 127: 273-282, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34517982

RESUMO

This study aims to propose an adaptive state-dependent gain finite-time convergent controller (using the fundamentals of the sliding mode theory) that solves the trajectory tracking for a class of state constraint master-slave robotic system (M-SRS) formed by two manipulators with the same number of articulations. The control design considers the effect of state constraints by implementing a state dependent adaptive gain. A Lyapunov-stability analysis leads to design the gain variation laws yielding proving the finite-time convergence of the sliding surface as well as the asymptotic convergence of the tracking error. The state constraints of the slave system motivate the characterization of the convergence-time as a function of the bounded uncertainties affecting the M-SRS dynamics. The forward-complete setting of the M-SRS justified the application of a robust and exact differentiator which estimated the articulation velocities for the slave robot. The estimated velocities are used as part of the realization of the output feedback controller. Numerical simulations demonstrate that the proposed control scheme provides a smaller quadratic norm of the tracking error compared with the obtained with other controllers (proportional-derivative and conventional sliding modes). The proposed control approach satisfies the state constraints while the sliding manifold converges to the origin in finite-time as justified by the theoretical stability analysis.

2.
J Hazard Mater ; 146(3): 661-7, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17560024

RESUMO

In this work a new technique dealing with differential neural network observer (DNNO), which is related with differential neural networks (DNN) approach, is applied to estimate the anthracene dynamics decomposition and to identify the kinetic parameters in a contaminated model soil treatment by simple ozonation. To obtain the experimental data set, the model soil (sand) is combined with an initial anthracene concentration of 3.24mg/g and treated by ozone (with the ozone initial concentration 16mg/L) during 90min in a reactor by the "fluid bed" principle. The anthracene degradation degree was controlled by UV-vis spectrophotometry and HPLC techniques. Based on the HPLC data, the obtained results confirm that anthracene may be decomposed completely in the solid phase by simple ozonation during 20min and by-products of ozonation are started to be destroyed after 30min of treatment. In the ozonation process the ozone concentration in the gas phase at the reactor outlet is registered by an ozone detector. The variation of this parameter is used to obtain the summary characteristic curve of the anthracene ozonation (ozonogram). Then, using the experimental decomposition dynamics of anthracene and the ozonogram, the proposed DNNO is trained to reconstruct the anthracene decomposition and to estimate the anthracene ozonation constant using the DNN technique and a modified Least Square method.


Assuntos
Antracenos/química , Oxidantes Fotoquímicos/química , Ozônio/química , Poluentes do Solo/química , Cinética , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA