Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 172(15): 3831-45, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25939452

RESUMO

BACKGROUND AND PURPOSE: Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer's disease, an effect mimicked by adenosine A2 A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. EXPERIMENTAL APPROACH: We determined whether A2 A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2 A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. KEY RESULTS: Scopolamine (1.0 mg·kg(-1) , i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2 A receptor antagonist (SCH 58261, 0.1-1.0 mg·kg(-1) , i.p.) and by the A1 receptor antagonist (DPCPX, 0.2-5.0 mg·kg(-1) , i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2 A receptors with CGS 21680 (0.1-0.5 mg·kg(-1) , i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg(-1) , i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. CONCLUSIONS AND IMPLICATIONS: These results show that A2 A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment.


Assuntos
Transtornos da Memória/fisiopatologia , Memória de Curto Prazo/fisiologia , Agonistas do Receptor Purinérgico P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptor A2A de Adenosina/fisiologia , Adenosina/administração & dosagem , Adenosina/análogos & derivados , Adenosina/antagonistas & inibidores , Adenosina/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Infusões Intraventriculares , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Fenetilaminas/administração & dosagem , Fenetilaminas/antagonistas & inibidores , Fenetilaminas/farmacologia , Pirimidinas/farmacologia , Receptor A1 de Adenosina/fisiologia , Reconhecimento Psicológico/efeitos dos fármacos , Escopolamina/antagonistas & inibidores , Escopolamina/farmacologia , Triazóis/farmacologia , Xantinas/farmacologia
2.
Neuroscience ; 286: 353-63, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25499313

RESUMO

Since that fast food consumption have raised concerns about people's health, we evaluated the influence of trans fat consumption on behavioral, biochemical and molecular changes in the brain-cortex of second generation rats exposed to a model of mania. Two successive generations of female rats were supplemented with soybean oil (SO, rich in n-6 FA, control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans FA) from pregnancy, lactation to adulthood, when male rats from 2nd generation received amphetamine (AMPH-4 mg/kg-i.p., once a day, for 14 days) treatment. AMPH increased locomotor index in all animals, which was higher in the HVF group. While the FO group showed increased n-3 polyunsaturated fatty acid (PUFA) incorporation and reduced n-6/n-3 PUFA ratio, HVF allowed trans fatty acid (TFA) incorporation and increased n-6/n-3 PUFA ratio in the brain-cortex. In fact, the FO group showed minor AMPH-induced hyperactivity, decreased reactive species (RS) generation per se, causing no changes in protein carbonyl (PC) levels and dopamine transporter (DAT). FO supplementation showed molecular changes, since proBDNF was increased per se and reduced by AMPH, decreasing the brain-derived neurotrophic factor (BDNF) level following drug treatment. Conversely, HVF was related to increased hyperactivity, higher PC level per se and higher AMPH-induced PC level, reflecting on DAT, whose levels were decreased per se as well as in AMPH-treated groups. In addition, while HVF increased BDNF-mRNA per se, AMPH reduced this value, acting on BDNF, whose level was lower in the same AMPH-treated experimental group. ProBDNF level was influenced by HVF supplementation, but it was not sufficient to modify BDNF level. These findings reinforce that prolonged consumption of trans fat allows TFA incorporation in the cortex, facilitating hyperactive behavior, oxidative damages and molecular changes. Our study is a warning about cross-generational consumption of processed food, since high trans fat may facilitate the development of neuropsychiatric conditions, including bipolar disorder (BD).


Assuntos
Transtorno Bipolar/metabolismo , Transtorno Bipolar/psicologia , Córtex Cerebral/metabolismo , Ácidos Graxos trans/toxicidade , Fatores Etários , Anfetamina , Animais , Transtorno Bipolar/induzido quimicamente , Química Encefálica , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-6/análise , Feminino , Óleos de Peixe , Masculino , Atividade Motora , Gravidez , Carbonilação Proteica , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Óleo de Soja , Ácidos Graxos trans/análise
3.
Neuroscience ; 270: 27-39, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24726984

RESUMO

Caffeine is the psychostimulant most consumed worldwide but concerns arise about the growing intake of caffeine-containing drinks by adolescents since the effects of caffeine on cognitive functions and neurochemical aspects of late brain maturation during adolescence are poorly known. We now studied the behavioral impact in adolescent male rats of regular caffeine intake at low (0.1mg/mL), moderate (0.3mg/mL) and moderate/high (1.0mg/mL) doses only during their active period (from 7:00 P.M. to 7:00 A.M.). All tested doses of caffeine were devoid of effects on locomotor activity, but triggered anxiogenic effects. Caffeine (0.3 and 1mg/mL) improved the performance in the object recognition task, but the higher dose of caffeine (1.0mg/mL) decreased the habituation to an open-field arena, suggesting impaired non-associative memory. All tested doses of caffeine decreased the density of glial fibrillary acidic protein and synaptosomal-associated protein-25, but failed to modify neuron-specific nuclear protein immunoreactivity in the hippocampus and cerebral cortex. Caffeine (0.3-1mg/mL) increased the density of brain-derived neurotrophic factor (BDNF) and proBDNF density as well as adenosine A1 receptor density in the hippocampus, whereas the higher dose of caffeine (1mg/mL) increased the density of proBDNF and BDNF and decreased A1 receptor density in the cerebral cortex. These findings document an impact of caffeine consumption in adolescent rats with a dual impact on anxiety and recognition memory, associated with changes in BDNF levels and decreases of astrocytic and nerve terminal markers without overt neuronal damage in hippocampal and cortical regions.


Assuntos
Ansiedade/induzido quimicamente , Encéfalo/efeitos dos fármacos , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Memória/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Animais , Ansiedade/fisiopatologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Masculino , Memória/fisiologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Wistar , Receptor A1 de Adenosina/metabolismo , Reconhecimento Psicológico/fisiologia , Proteína 25 Associada a Sinaptossoma/metabolismo
4.
Neuroscience ; 222: 100-9, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22796076

RESUMO

The participation of the brain-derived neurotrophic factor (BDNF) in the benefits of physical exercise on cognitive functions has been widely investigated. Different from voluntary exercise, the effects of treadmill running on memory and BDNF are still controversial. Importantly, the impact of the frequency of physical exercise on memory remains still unknown. In this study, young adult and middle-aged rats were submitted to 8 weeks of treadmill running at moderate intensity and divided into 4 groups of frequency: 0, 1, 3 and 7 days/week. Aversive and recognition memory were assessed as well as the immunocontent of proBDNF, BDNF and tyrosine kinase receptor type B (TrkB) in the hippocampus. Frequencies did not modify memory in young adult animals. The frequency of 1 day/week increased proBDNF and BDNF. All frequencies decreased TrkB immunocontent. Middle-aged animals presented memory impairment along with increased BDNF and downregulation of TrkB receptor. The frequency of 1day/week reversed age-related recognition memory impairment, but worsened the performance in the inhibitory avoidance task. The other frequencies rescued aversive memory, but not recognition memory. None of frequencies altered the age-related increase in the BDNF. Seven days/week decreased proBDNF and there was a trend toward increase in the TrkB by the frequency of 1 day/week. These results support that the frequency and intensity of exercise have a profound impact on cognitive functions mainly in elderly. Thus, the effects of physical exercise on behavior and brain functions should take into account the frequency and intensity.


Assuntos
Envelhecimento/fisiologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Memória/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Western Blotting , Eletroforese em Gel de Poliacrilamida , Hipocampo/metabolismo , Masculino , Ratos , Ratos Wistar , Receptor trkB/metabolismo , Reconhecimento Psicológico
5.
Phytomedicine ; 18(4): 327-33, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20739160

RESUMO

UNLABELLED: Alzheimer's disease (AD) is expected to affect more than 22 million people worldwide by 2025, causing devastating suffering and enormous costs to families and society. AD is a multifactorial disease, with a complex pathological mosaic. In rodents, AD-like dementia can be induced by cerebral microinjection of Aß peptide, leading to amyloid deposits, amnesia and various features of neurodegeneration. Marapuama (Ptychopetalum olacoides) is regarded as a "brain tonic" in the Amazon region and shows a nootropic profile in rodents. AIM OF THE STUDY: Because a specific extract (POEE) of Marapuama was shown to possess promnesic and anti-amnesic properties, the aim of this study was to verify if POEE is also effective against Aß(1-42)-induced cognitive deficit in mice. Additionally, Aß deposits (Congo red), GFAP immunoreactivity (immunohistochemistry), and neurodegenerative changes in the hippocampal pyramidal layer (Nissl) were examined as measures of Aß(1-42)-induced neurodegeneration. MATERIALS AND METHODS: CF1 mice were subjected to the experimental Alzheimer model with the Aß(1-42) i.c.v. administration. The effects of POEE 800 mg/kg were evaluated over 14 consecutive days of treatment. RESULTS: The data show that 14 days of oral treatment with POEE (800 mg/kg) was effective in preventing Aß-induced cognitive impairment, without altering the levels of BDNF and with parallel reductions in Aß deposits and astrogliosis. CA1 hippocampus loss induced by Aß(1-42) was also diminished in POEE-treated mice. CONCLUSION: This study offers evidence of functional and neuroprotective effects of two weeks treatment with a Ptychopetalum olacoides extract against Aß peptide-induced neurotoxicity in mice. Given the multifactorial nature of neurodegeneration, the considerable potential for an AChE inhibitor displaying associated neuroprotective properties such as here reported warrants further clinic evaluation.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Degeneração Neural/tratamento farmacológico , Nootrópicos/farmacologia , Olacaceae/química , Fitoterapia , Extratos Vegetais/farmacologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Demência/tratamento farmacológico , Modelos Animais de Doenças , Progressão da Doença , Masculino , Camundongos , Neuroglia/patologia , Nootrópicos/uso terapêutico , Fragmentos de Peptídeos/farmacologia , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química
6.
Phytomedicine ; 17(12): 956-62, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20833520

RESUMO

The goal of acetylcholinesterase inhibitors (AChEIs) used to treat Alzheimer's patients is an improvement in cholinergic transmission. While currently available AChEIs have limited success, a huge impediment to the development of newer ones is access to the relevant brain areas. Promnesic, anti-amnesic and AChEI properties were identified in a standardized ethanol extract from Ptychopetalum olacoides (POEE), a medicinal plant favored by the elderly in Amazon communities. The purpose of this study was to provide conclusive evidence that orally given POEE induces AChE inhibition in brain areas relevant to cognition. Histochemistry experiments confirmed that the anticholinesterase compound(s) present in POEE are orally bioavailable, inducing meaningful AChE inhibition in the hippocampus CA1 (∼33%) and CA3 (∼20%), and striatum (∼17%). Ellman's colorimetric analysis revealed that G1 and G4 AChE isoforms activities were markedly inhibited (66 and 72%, respectively) in hippocampus and frontal cortex (50 and 63%, respectively), while G4 appeared to be selectively inhibited (72%) in the striatum. Western blotting showed that POEE did not induce significant changes in the AChE immunocontent suggesting that its synthesis is not extensively modified. This study provides definitive proof of meaningful anticholinesterase activity compatible with the observed promnesic and anti-amnesic effects of POEE in mice, reaffirming the potential of this extract for treating neurodegenerative conditions where a hypofunctioning cholinergic neurotransmission is prominent. Adequate assessment of the safety and efficacy of this extract and/or its isolated active compound(s) are warranted.


Assuntos
Acetilcolinesterase/metabolismo , Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Nootrópicos/farmacologia , Olacaceae , Fitoterapia , Extratos Vegetais/farmacologia , Animais , Cognição/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Doenças Neurodegenerativas/tratamento farmacológico , Raízes de Plantas , Isoformas de Proteínas
7.
Br J Pharmacol ; 156(1): 163-72, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19133997

RESUMO

BACKGROUND AND PURPOSE: Allopurinol is a potent inhibitor of the enzyme xanthine oxidase, used primarily in the treatment of hyperuricemia and gout. It is well known that purines exert multiple effects on pain transmission. We hypothesized that the inhibition of xanthine oxidase by allopurinol, thereby reducing purine degradation, could be a valid strategy to enhance purinergic activity. The aim of this study was to investigate the anti-nociceptive profile of allopurinol on chemical and thermal pain models in mice. EXPERIMENTAL APPROACH: Mice received an intraperitoneal (i.p.) injection of vehicle (Tween 10%) or allopurinol (10-400 mg kg(-1)). Anti-nociceptive effects were measured with intraplantar capsaicin, intraplantar glutamate, tail-flick or hot-plate tests. KEY RESULTS: Allopurinol presented dose-dependent anti-nociceptive effects in all models. The opioid antagonist naloxone did not affect these anti-nociceptive effects. The non-selective adenosine-receptor antagonist caffeine and the selective A(1) adenosine-receptor antagonist, DPCPX, but not the selective A(2A) adenosine-receptor antagonist, SCH58261, completely prevented allopurinol-induced anti-nociception. No obvious motor deficits were produced by allopurinol, at doses up to 200 mg kg(-1). Allopurinol also caused an increase in cerebrospinal fluid levels of purines, including the nucleosides adenosine and guanosine, and decreased cerebrospinal fluid concentration of uric acid. CONCLUSIONS AND IMPLICATIONS: Allopurinol-induced anti-nociception may be related to adenosine accumulation. Allopurinol is an old and extensively used compound and seems to be well tolerated with no obvious central nervous system toxic effects at high doses. This drug may be useful to treat pain syndromes in humans.


Assuntos
Agonistas do Receptor A1 de Adenosina , Alopurinol/farmacologia , Analgésicos/farmacologia , Xantina Oxidase/antagonistas & inibidores , Adenosina/líquido cefalorraquidiano , Antagonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Alopurinol/uso terapêutico , Analgésicos/uso terapêutico , Animais , Capsaicina , Relação Dose-Resposta a Droga , Ácido Glutâmico , Temperatura Alta , Injeções Intraperitoneais , Masculino , Camundongos , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor/tratamento farmacológico , Dor/etiologia , Medição da Dor , Pirimidinas/farmacologia , Triazóis/farmacologia , Ácido Úrico/líquido cefalorraquidiano , Xantinas/farmacologia
8.
Neuroscience ; 153(4): 1071-8, 2008 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-18436387

RESUMO

The beneficial effects of caffeine on cognition are controversial in humans, whereas its benefit in rodents had been well characterized. However, most studies were performed with acute administration of caffeine and the tasks used to evaluate cognition had aversive components. Here, we evaluated adulthood administration of caffeine up to old age on recognition memory in mice using the object recognition task (ORT) and on brain-derived neurotrophic factor (BNDF) and tyrosine kinase receptor (TrkB) immunocontent in the hippocampus. Adult mice (6 months old) received either drinking water or caffeine (1 mg/mL) during 12 months. At 18 months of age both groups were tested for ORT. Our results showed that aged mice exhibited lower performance in the recognition memory compared with adults (6 months old). Furthermore, caffeine-treated mice showed similar performance to adult mice in the ORT and an improvement compared with their age-matched control mice. Caffeine also counteracted the age-related increase in BDNF and TrkB immunocontent. Our results corroborate with other studies and reinforce that caffeine consumed in adulthood may prevent recognition memory decline with aging. This preventive effect may involve a decrease in the hippocampal BDNF and TrkB immunocontent.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cafeína/uso terapêutico , Estimulantes do Sistema Nervoso Central/uso terapêutico , Transtornos da Memória/metabolismo , Transtornos da Memória/prevenção & controle , Receptor trkB/metabolismo , Fatores Etários , Animais , Comportamento Animal , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Transtornos da Memória/patologia , Camundongos , Reconhecimento Psicológico/efeitos dos fármacos
9.
Environ Toxicol Pharmacol ; 19(2): 249-53, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21783483

RESUMO

S100B, a calcium binding protein physiologically produced and released by astrocytes, has been used as a peripheral marker of brain damage. Here, we investigated the effects of subcutaneous injections of methylmercury chloride (MeHg-5mg/kg), an environmental neurotoxicant, on S100B protein content in cerebrospinal fluid (CSF) of adult rats. In addition, the performance of animals in an open field (number of squares crossing and rearings) was also analyzed in order to obtain a possible link between alteration in S100B protein content in CSF and parameters related to neurological injury. MeHg treatment increased serum mercury and S100B protein levels in the CSF. A decrease in the numbers of crossings and rearings was observed in MeHg-treated animals when compared to control group, which suggests a possible neurological injury. The present data show, for the first time, increased S100B levels in CSF after exposure to a neurotoxic metal. Authors discuss the possibility of astrocytic involvement in MeHg-induced neurotoxicity.

10.
Neurochem Int ; 44(5): 345-53, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14643752

RESUMO

A predominantly neurological presentation is common in patients with glutaric acidemia type I (GA-I). 3-hydroxyglutaric acid (3-OHGA), which accumulates in affected patients, has recently been demonstrated to play a central role in the neuropathogenesis of this disease. In the present study, we investigated the in vitro effects of 3-OHGA at concentrations ranging from 10 to 1000 microM on various parameters of the glutamatergic system, such as the basal and potassium-induced release of [3H]glutamate by synaptosomes, as well as on Na+-dependent [3H]glutamate uptake by synaptosomes and astrocytes and Na+-independent [3H]glutamate uptake by synaptic vesicles from cerebral cortex of 30-day-old Wistar rats. First, we observed that exposure of cultured astrocytes to 3-OHGA for 20 h did not reduce their viability. Furthermore, 3-OHGA significantly increased Na+-dependent [3H]glutamate uptake by astrocytes by up to 80% in a dose-dependent manner at doses as low as 30 microM. This effect was not dependent on the presence of the metabolite during the uptake assay, since it occurred even when 3-OHGA was withdrawn from the medium after cultured cells had been exposed to the acid for approximately 1 h. All other parameters investigated were not influenced by this organic acid, indicating a selective action of 3-OHGA on astrocyte transporters. Although the exact mechanisms involved in 3-OHGA-stimulatory effect on astrocyte glutamate uptake are unknown, the present findings contribute to the understanding of the pathophysiology of GA-I, suggesting that astrocytes may protect neurons against excitotoxic damage caused by 3-OHGA by increasing glutamate uptake and therefore reducing the concentration of this excitatory neurotransmitter in the synaptic cleft.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Glutaratos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/biossíntese , Ratos , Ratos Wistar , Estimulação Química , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
11.
Brain Res ; 928(1-2): 106-12, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11844477

RESUMO

Extracellular guanine-based purines (GBPs) have been implicated in neuroprotective effects against glutamate toxicity by modulating the glutamatergic system through mechanisms without the involvement of G proteins. Accordingly, GBPs have been shown to inhibit the binding of glutamate and its analogs in different brain membrane preparations. However, brain membrane preparations used for these studies are comprised of both post- and pre-neuronal and glial synaptic components. In this study we investigated the ability of GBPs to displaced glutamate and AMPA binding at postsynaptic densities (PSDs). PSDs are markedly prominent in glutamatergic synapses and retains the native apposition of membrane components and post synaptic receptors. The PSD fraction was prepared from cerebral cortex of Wistar rats and it was characterized as PSDs by electron microscopy and by an enrichment of PSD-95, a protein marker of PSDs (90% of immunodetection). Moreover, we detected an enrichment of glutamate receptors subunits that including NR1 subunit of NMDA receptors and GluR1 subunit of AMPA receptors. GppNp (poor hydrolyzable GTP analog) and GMP displaced 40 and 36% of glutamate binding, respectively, and guanosine only 23%. AMPA binding was not affected by guanosine and was inhibited 21 and 25% by GppNp and GMP, respectively. Hence, this study demonstrates that guanine based purines inhibited glutamate and AMPA binding at postsynaptic membrane preparations, contributing for a better understanding of the mechanisms by which GBPs antagonize glutamatergic neurotoxicicity, e.g. the possible involvement of glutamatergic postsynaptic receptors in their neuroprotective roles.


Assuntos
Ligação Competitiva/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Guanina/metabolismo , Neurônios/metabolismo , Purinas/farmacologia , Receptores de Glutamato/metabolismo , Membranas Sinápticas/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Ligação Competitiva/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/ultraestrutura , Proteína 4 Homóloga a Disks-Large , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Guanosina Monofosfato/farmacologia , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/farmacologia , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Microscopia Eletrônica , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Fármacos Neuroprotetores/farmacologia , Ensaio Radioligante , Ratos , Ratos Wistar , Receptores de Glutamato/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/ultraestrutura , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
12.
Neurosci Lett ; 299(3): 217-20, 2001 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-11165774

RESUMO

Ebselen is a selenium compound that have glutathione peroxidase-like activity which is neuroprotective in acute stroke ischemia. The efficacy of ebselen to prevent excitotoxicity provoked by glutamate in cerebellar granule neurons was investigated at various time points and concentrations. Simultaneous addition of ebselen with glutamate decreased neuronal death and was completely reversed by 3 microM of ebselen (3 (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and propidium iodide assays). However, when 1 microM of ebselen was added with glutamate and remained in the culture medium until 24 or 48 h, the neuronal survival increased to the control. The mechanism proposed for neuroprotection was the ability of ebselen to prevent lipoperoxidation provoked by glutamate. The present findings propose to amplify the use of ebselen in others neurodegenerative disorders involving glutamatergic system.


Assuntos
Antioxidantes/farmacologia , Azóis/farmacologia , Ácido Glutâmico/metabolismo , Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/metabolismo , Compostos Organosselênicos/farmacologia , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Córtex Cerebelar/citologia , Córtex Cerebelar/efeitos dos fármacos , Córtex Cerebelar/metabolismo , Relação Dose-Resposta a Droga , Ácido Glutâmico/farmacologia , Isoindóis , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Neurotoxinas/farmacologia , Ratos , Ratos Wistar
13.
J Neurol Sci ; 173(2): 93-6, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-10675650

RESUMO

Synaptosomes and plasma membrane preparations from brain of 30-day-old rats were incubated with glutaric acid at final concentrations ranging from 10 nM to 1 mM for the determination of glutamate uptake and binding, respectively. [3H]Glutamate uptake into synaptosomes was inhibited by approximately 50% by 1 mM glutaric acid, corresponding to the concentration found in brain of glutaric acidemic children. In addition, in the presence of extracellular Na+ concentrations, the same dose of glutaric acid decreased by about 30% [3H]glutamate binding to brain plasma membranes. The results indicate that the inhibition of both glutamate uptake into synaptosomes and glutamate binding to plasma synaptic membranes by the metabolite could result in elevated concentrations of the excitatory neurotransmitter in the synaptic cleft, potentially causing excitotoxicity to neural cells, a fact that may be related to the brain damage characteristic of glutaric acidemia type I.


Assuntos
Membrana Celular/metabolismo , Convulsivantes/farmacologia , Ácido Glutâmico/metabolismo , Glutaratos/farmacologia , Neurotoxinas/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Sinaptossomos/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Sistema X-AG de Transporte de Aminoácidos , Animais , Depressão Química , Glutamato Descarboxilase/antagonistas & inibidores , Glutaril-CoA Desidrogenase , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Oxirredutases/deficiência , Ratos , Ratos Wistar , Sódio/farmacologia , Sinaptossomos/metabolismo , Ácido gama-Aminobutírico/biossíntese , Ácido gama-Aminobutírico/deficiência
14.
Pharmacol Toxicol ; 79(3): 136-43, 1996 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8884872

RESUMO

Dimercaprol is a compound used in the treatment of mercury intoxication, however with low therapeutic efficacy. It is assumed that dimercaprol acts by reactivating target sulfhydryl-containing proteins. In the present investigation we studied the inhibitory effect of mercuric chloride treatment (3 days with 2.3 or 4.6 mg/kg HgCl2, sc) in mice on cerebral, renal and hepatic delta-aminolevulinate dehydratase (ALA-D) activity, and a possible reversal of the effect of mercury by dimercaprol (0.25 mmol/kg, 24 hr after the last mercury injection). Mercuric chloride did not inhibit cerebral ALA-D at the doses injected. Dimercaprol treatment did not restore the normal enzyme activity of the liver after the 25% inhibition caused by 4.6 mg/kg HgCl2. In the kidney, dimercaprol enhanced the inhibitory effect of 4.6 mg/kg mercuric chloride (from 35% after mercury treatment alone to 65% after mercury plus dimercaprol treatment). Mercury content increased in kidney after exposure to 2.3 or 4.6 mg/kg and the levels attained were higher than in any other organ Mercury accumulated in liver only after exposure to 4.6 mg/kg HgCl2, and dimercaprol further increased mercury deposition. Dimercaprol treatment also increased the levels of mercury in brain of animals exposed to 4.6 mg/kg HgCl2 The enzymes from all sources presented similar sensitivity to the combined effect of HgCl2 and dimercaprol in vitro. In the absence of preincubation, 0-500 muM dimercaprol potentiated the inhibitory effect of HgCl2 on ALA-D activity. In the presence of preincubation, and 100 and 250 muM dimercaprol enhanced ALA-D sensitivity to mercury, whereas 500 muM dimercaprol partially protected the enzyme from mercury inhibition. Dimercaprol (500 muM) inhibited renal and hepatic ALA-D when preincubated with the enzymes. These data suggested that the dimercaprol-Hg complex may have a more toxic effect on ALA-D activity than Hg2+. Furthermore, the present data show that dimercaprol did not acts by reactivating mercury-inhibited sulfhydryl-containing ALA-D, and that indeed it may have an inhibitory effect per se depending on the tissue.


Assuntos
Antídotos/farmacologia , Dimercaprol/farmacologia , Cloreto de Mercúrio/toxicidade , Mercúrio/metabolismo , Sintase do Porfobilinogênio/metabolismo , Análise de Variância , Animais , Antídotos/administração & dosagem , Antídotos/toxicidade , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Dimercaprol/administração & dosagem , Dimercaprol/toxicidade , Injeções Subcutâneas , Rim/efeitos dos fármacos , Rim/enzimologia , Dose Letal Mediana , Fígado/efeitos dos fármacos , Fígado/enzimologia , Cloreto de Mercúrio/administração & dosagem , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA